Skip to main content
Log in

Chiral selective tunneling induced graphene nanoribbon switch

  • Research Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

An armchair graphene nanoribbon switch has been designed based on the principle of the Klein paradox. The resulting switch displays an excellent on-off ratio performance. An anomalous tunneling phenomenon, in which electrons do not pass through the graphene nanoribbon junction even when the conventional resonance condition is satisfied, is observed in our numerical simulations. A selective tunneling rule is proposed to explain this interesting transport behavior based on our analytical results. Based on this selective rule, our switch design can also achieve the confinement of an electron to form a quantum qubit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 2004, 306: 666

    Article  ADS  Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London), 2005, 438: 197

    Article  ADS  Google Scholar 

  3. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London), 2005, 438: 201

    Article  ADS  Google Scholar 

  4. C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, A. H. Conrad, P. N. First, and W. A. de Heer, Science, 2006, 312: 1191

    Article  ADS  Google Scholar 

  5. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science, 2006, 313: 951

    Article  ADS  Google Scholar 

  6. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature (London), 2006, 442: 282

    Article  ADS  Google Scholar 

  7. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nature Phys., 2006, 2: 620

    Article  ADS  Google Scholar 

  8. O. Klein, Z. Phys., 1927, 53: 157

    ADS  Google Scholar 

  9. K. Sasaki, S. Murakami, and R. Saito, J. Phys. Soc. Jpn., 2006, 75: 074713

    Google Scholar 

  10. K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B, 1996, 54: 17954

    Google Scholar 

  11. M. R. Diehl, D. W. Steuerman, H. Tseng, S. A. Vignon, A. Star, P. C. Celestre, J. F. Stoddart, and J. R. Heath, Chem PhysChem, 2003, 4: 1335

    Google Scholar 

  12. A. N. Andriotis, M. Menon, D. Srivastava, and L. Chernozatonskii, Phys. Rev. Lett., 2001, 87: 066802

    Google Scholar 

  13. V. Barone, O. Hod, and G. Scuseria, Nano Lett., 2006, 6: 2748

    Article  ADS  Google Scholar 

  14. Y. W. Son, M. L. Cohen, and S. G. Louie, Nature (London), 2006, 444: 347

    Article  ADS  Google Scholar 

  15. Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett., 2006, 97: 216803

    Google Scholar 

  16. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn., 1996, 65: 1920

    Article  ADS  Google Scholar 

  17. K. Wakabayashi, Phys. Rev. B, 2001, 64: 125428

    Google Scholar 

  18. J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker, Phys. Rev. Lett., 2006, 96: 246802

    Google Scholar 

  19. Z. F. Wang, Q. X. Li, H. X. Zheng, H. Ren, H. B. Su, Q. W. Shi, and J. Chen, Phys. Rev. B, 2007, 75: 113406

    Google Scholar 

  20. R. Landauer, Philos. Mag., 1970, 21: 863

    Article  ADS  Google Scholar 

  21. J. Zhang, Q. W. Shi, and J. L. Yang, J. Chem. Phys., 2004, 120: 7733

    Article  ADS  Google Scholar 

  22. S. Datta, Electronic Transport in Mesoscopic Systems, New York: Cambridge University Press, 1995

    Google Scholar 

  23. C. P. Chang, Y. C. Huang, C. L. Lu, J. H. Ho, T. S. Li, and M. F. Lin, Carbon, 2006, 44: 508

    Article  Google Scholar 

  24. H. X. Zheng, Z. F. Wang, T. Luo, Q. W. Shi, and J. Chen, Phys. Rev. B, 2007, 75: 165414

    Google Scholar 

  25. K. Wakabayashi and M. Sigrist, Phys. Rev. Lett., 2000, 84: 3390

    Article  ADS  Google Scholar 

  26. Z. Y. Li, H. Y. Qian, J. Wu, B. L. Gu, and W. H. Duan, Phys. Rev. Lett., 2008, 100: 206802

    Google Scholar 

  27. D. Huertas-Hernando, F. Guinea, and A. Brataas, Eur. Phys. J. Special Topics, 2007, 148: 177

    Article  ADS  Google Scholar 

  28. B. Trauzette, D. V. Bulaev, D. Loss, and G. Burkard, Nature Phys., 2007, 3: 192

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-long Yang  (杨金龙).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Qw., Wang, Zf., Li, Qx. et al. Chiral selective tunneling induced graphene nanoribbon switch. Front. Phys. China 4, 373–377 (2009). https://doi.org/10.1007/s11467-009-0027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-009-0027-5

Keywords

PACS numbers

Navigation