Skip to main content
Log in

Dynamics of structural systems with various frequency-dependent damping models

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

The aim of this paper is to present the dynamic analyses of the system involving various damping models. The assumed frequency-dependent damping forces depend on the past history of motion via convolution integrals over some damping kernel functions. By choosing suitable damping kernel functions of frequency-dependent damping model, it may be derived from the familiar viscoelastic materials. A brief review of literature on the choice of available damping models is presented. Both the mode superposition method and Fourier transform method are developed for calculating the dynamic response of the structural systems with various damping models. It is shown that in the case of non-deficient systems with various damping models, the modal analysis with repeated eigenvalues are very similar to the traditional modal analysis used in undamped or viscously damped systems. Also, based on the pseudo-force approach, we transform the original equations of motion with nonzero initial conditions into an equivalent one with zero initial conditions and therefore present a Fourier transform method for the dynamics of structural systems with various damping models. Finally, some case studies are used to show the application and effectiveness of the derived formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rayleigh L. The Theory of Sound. New York: Dover Publications, 1877

    Google Scholar 

  2. Caughey T K, O’Kelly M E J. Classical normal modes in damped linear dynamic systems. Journal of Applied Mechanics, 1965, 32(3): 583–588

    Article  MathSciNet  Google Scholar 

  3. Adhikari S. Structural Dynamic Analysis with Generalized Damping Models: Analysis. Hoboken: John Wiley & Sons, 2013

    Book  Google Scholar 

  4. Liu C, Jing X, Daley S, et al. Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, 2015, 56–57(May): 55–80

    Article  Google Scholar 

  5. Li L, Hu Y. Generalized mode acceleration and modal truncation augmentation methods for the harmonic response analysis of nonviscously damped systems. Mechanical Systems and Signal Processing, 2015, 52–53(February): 46–59

    Article  Google Scholar 

  6. Bagley R L, Torvik P J. Fractional calculus— A different approach to the analysis of viscoelastically damped structures. AIAA Journal, 1983, 21(5): 741–748

    Article  MATH  Google Scholar 

  7. Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Singapore: World Scientific, 2010

    Book  Google Scholar 

  8. Lewandowski R, Chorążyczewski B. Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Computers & Structures, 2010, 88(1–2): 1–17

    Article  Google Scholar 

  9. Di Paola M, Pinnola F P, Zingales M. Fractional differential equations and related exact mechanical models. Computers & Mathematics with Applications (Oxford, England), 2013, 66(5): 608–620

    Article  Google Scholar 

  10. Enelund M, Lesieutre G A. Time domain modeling of damping using anelastic displacement fields and fractional calculus. International Journal of Solids and Structures, 1999, 36(29): 4447–4472

    Article  MATH  Google Scholar 

  11. Di Paola M, Pirrotta A, Valenza A. Visco-elastic behavior through fractional calculus: An easier method for best fitting experimental results. Mechanics of Materials, 2011, 43(12): 799–806

    Article  Google Scholar 

  12. Biot M A. Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. Journal of Applied Physics, 1954, 25(11): 1385–1391

    Article  MATH  Google Scholar 

  13. Biot M A. Variational principles in irreversible thermodynamics with application to viscoelasticity. Physical Review, 1955, 97(6): 1463–1469

    Article  MATH  MathSciNet  Google Scholar 

  14. Adhikari S. Structural Dynamic Analysis with Generalized Damping Models: Identification. Hoboken: John Wiley & Sons, 2013

    Book  Google Scholar 

  15. Li L, Hu Y, Wang X. Design sensitivity analysis of dynamic response of nonviscously damped systems. Mechanical Systems and Signal Processing, 2013, 41(1–2): 613–638

    Article  Google Scholar 

  16. Li L, Hu Y, Wang X. Improved approximate methods for calculating frequency response function matrix and response of MDOF systems with viscoelastic hereditary terms. Journal of Sound and Vibration, 2013, 332(15): 3945–3956

    Article  Google Scholar 

  17. Zopf C, Hoque S, Kaliske M. Comparison of approaches to model viscoelasticity based on fractional time derivatives. Computational Materials Science, 2015, 98(February): 287–296

    Article  Google Scholar 

  18. Woodhouse J. Linear damping models for structural vibration. Journal of Sound and Vibration, 1998, 215(3): 547–569

    Article  MATH  Google Scholar 

  19. Golla D F, Hughes P C. Dynamics of viscoelastic structures -A time domain finite element formulation. Journal of Applied Mechanics, 1985, 52(4): 897–906

    Article  MATH  MathSciNet  Google Scholar 

  20. McTavish D J, Hughes P C. Modeling of linear viscoelastic space structures. Journal of Vibration and Acoustics, 1993, 115(1): 103–110

    Article  Google Scholar 

  21. Lesieutre G A. Finite element modeling of frequency-dependent material damping using augmented thermodynamic fields. Journal of Guidance, Control, and Dynamics, 1990, 13(6): 1040–1050

    Article  MATH  Google Scholar 

  22. Lesieutre G A. Finite elements for dynamic modeling of uniaxial rods with frequency-dependent material properties. International Journal of Solids and Structures, 1992, 29(12): 1567–1579

    Article  MATH  Google Scholar 

  23. Renaud F, Dion J L, Chevallier G, et al. A new identification method of viscoelastic behavior: Application to the generalized Maxwell model. Mechanical Systems and Signal Processing, 2011, 25(3): 991–1010

    Article  Google Scholar 

  24. Koeller R. Applications of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics, 1984, 51(2): 299–307

    Article  MATH  MathSciNet  Google Scholar 

  25. Adhikari S, Woodhouse J. Identification of damping: Part 1, viscous damping. Journal of Sound and Vibration, 2001, 243(1): 43–61

    Article  Google Scholar 

  26. García-Barruetabeía J, Cortés F, Manuel Abete J. Influence of nonviscous modes on transient response of lumped parameter systems with exponential damping. Journal of Vibration and Acoustics, 2011, 133(6): 064502

    Article  Google Scholar 

  27. Li L, Hu Y, Wang X, et al. Eigensensitivity analysis for asymmetric nonviscous systems. AIAA Journal, 2013, 51(3): 738–741

    Article  Google Scholar 

  28. Adhikari S. Damping models for structural vibration. Dissertation for the Doctoral Degree. Cambridge: University of Cambridge, 2000

    Google Scholar 

  29. Gonzalez-Lopez S, Fernandez-Saez J. Vibrations in Euler-Bernoulli beams treated with non-local damping patches. Computers & Structures, 2012, 108–109: 125–134

    Article  Google Scholar 

  30. Friswell M I, Adhikari S, Lei Y. Non-local finite element analysis of damped beams. International Journal of Solids and Structures, 2007, 44(22–23): 7564–7576

    Article  MATH  Google Scholar 

  31. Pan Y, Wang Y. Frequency-domain analysis of exponentially damped linear systems. Journal of Sound and Vibration, 2013, 332(7): 1754–1765

    Article  MathSciNet  Google Scholar 

  32. Adhikari S, Friswell M I, Lei Y. Modal analysis of nonviscously damped beams. Journal of Applied Mechanics, 2007, 74(5): 1026–1030

    Article  Google Scholar 

  33. Palmeri A, Ricciardelli F, De Luca A, et al. State space formulation for linear viscoelastic dynamic systems with memory. Journal of Engineering Mechanics, 2003, 129(7): 715–724

    Article  Google Scholar 

  34. Wagner N, Adhikari S. Symmetric state-space formulation for a class of non-viscously damped systems. AIAA Journal, 2003, 41(5): 951–956

    Article  Google Scholar 

  35. Palmeri A, Adhikari S. A Galerkin-type state-space approach for transverse vibrations of slender double-beam systems with viscoelastic inner layer. Journal of Sound and Vibration, 2011, 330(26): 6372–6386

    Article  Google Scholar 

  36. Tran Q H, Ouisse M, Bouhaddi N. A robust component mode synthesis method for stochastic damped vibroacoustics. Mechanical Systems and Signal Processing, 2010, 24(1): 164–181

    Article  Google Scholar 

  37. Di Paola M, Pinnola F P, Spanos P D. Analysis of multi-degree-offreedom systems with fractional derivative elements of rational order. In: Proceedings of 2014 International Conference on Fractional Differentiation and Its Applications (ICFDA). IEEE, 2014, 1–6

    Chapter  Google Scholar 

  38. Adhikari S, Pascual B. Iterative methods for eigenvalues of viscoelastic systems. Journal of Vibration and Acoustics, 2011, 133(2): 021002

    Article  Google Scholar 

  39. Adhikari S, Pascual B. Eigenvalues of linear viscoelastic systems. Journal of Sound and Vibration, 2009, 325(4–5): 1000–1011

    Article  Google Scholar 

  40. Cortés F, Elejabarrieta M J. Computational methods for complex eigenproblems in finite element analysis of structural systems with viscoelastic damping treatments. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44–47): 6448–6462

    Article  MATH  Google Scholar 

  41. Bilasse M, Charpentier I, Daya E M, et al. A generic approach for the solution of nonlinear residual equations. Part II: Homotopy and complex nonlinear eigenvalue method. Computer Methods in Applied Mechanics and Engineering, 2009, 198(49–52): 3999–4004

    Article  MATH  MathSciNet  Google Scholar 

  42. Daya E, Potier-Ferry M. A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures. Computers & Structures, 2001, 79(5): 533–541

    Article  MathSciNet  Google Scholar 

  43. Lázaro M, Pérez-Aparicio J L, Epstein M. A viscous approach based on oscillatory eigensolutions for viscoelastically damped vibrating systems. Mechanical Systems and Signal Processing, 2013, 40(2): 767–782

    Article  Google Scholar 

  44. LáZaro M, Pérez-Aparicio J L. Multiparametric computation of eigenvalues for linear viscoelastic structures. Computers & Structures, 2013, 117(February): 67–81

    Article  Google Scholar 

  45. Lázaro M, Pérez-Aparicio J L. Dynamic analysis of frame structures with free viscoelastic layers: New closed-form solutions of eigenvalues and a viscous approach. Engineering Structures, 2013, 54(September): 69–81

    Article  Google Scholar 

  46. Pawlak Z, Lewandowski R. The continuation method for the eigenvalue problem of structures with viscoelastic dampers. Computers & Structures, 2013, 125(September): 53–61

    Article  Google Scholar 

  47. Van Beeumen R, Meerbergen K, Michiels W. A rational Krylov method based on Hermite interpolation for nonlinear eigenvalue problems. SIAM Journal on Scientific Computing, 2013, 35(1): A327–A350

    Article  MATH  Google Scholar 

  48. Güttel S, van Beeumen R, Meerbergen K, et al. NLEIGS: A class of fully rational Krylov methods for nonlinear eigenvalue problems. SIAM Journal on Scientific Computing, 2014, 36(6): A2842–A2864

    Article  MATH  Google Scholar 

  49. MSC. Software Corporation. MD/MSC Nastran 2010 Dynamic Analysis User’s Guide, 2010

    Google Scholar 

  50. Li L, Hu Y, Wang X. Design sensitivity and Hessian matrix of generalized eigenproblems. Mechanical Systems and Signal Processing, 2014, 43(1–2): 272–294

    Article  MathSciNet  Google Scholar 

  51. Murthy D V, Haftka R T. Derivatives of eigenvalues and eigenvectors of a general complex matrix. International Journal for Numerical Methods in Engineering, 1988, 26(2): 293–311

    Article  MATH  MathSciNet  Google Scholar 

  52. Andrew A L. Convergence of an iterative method for derivatives of eigensystems. Journal of Computational Physics, 1978, 26(1): 107–112

    Article  MATH  MathSciNet  Google Scholar 

  53. Diekmann O, van Gils S A, Lunel S V, et al. Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Berlin: Springer -Verlag, 1995

    MATH  Google Scholar 

  54. Li L, Hu Y, Wang X. Eliminating the modal truncation problem encountered in frequency responses of viscoelastic systems. Journal of Sound and Vibration, 2014, 333(4): 1182–1192

    Article  MathSciNet  Google Scholar 

  55. Li L, Hu Y, Wang X, et al. A hybrid expansion method for frequency response functions of non-proportionally damped systems. Mechanical Systems and Signal Processing, 2014, 42(1–2): 31–41

    Article  MathSciNet  Google Scholar 

  56. Adhiakri S. Classical normal modes in nonviscously damped linear systems. AIAA Journal, 2001, 39(5): 978–980

    Article  Google Scholar 

  57. Veletsos A S, Ventura C E. Dynamic analysis of structures by the DFT method. Journal of Structural Engineering, 1985, 111(12): 2625–2642

    Article  Google Scholar 

  58. Lee U, Kim S, Cho J. Dynamic analysis of the linear discrete dynamic systems subjected to the initial conditions by using an FFT-based spectral analysis method. Journal of Sound and Vibration, 2005, 288(1–2): 293–306

    Article  Google Scholar 

  59. Mansur W, Soares D Jr, Ferro M. Initial conditions in frequency-domain analysis: The FEM applied to the scalar wave equation. Journal of Sound and Vibration, 2004, 270(4–5): 767–780

    Article  Google Scholar 

  60. Barkanov E, Hufenbach W, Kroll L. Transient response analysis of systems with different damping models. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1–2): 33–46

    Article  MATH  Google Scholar 

  61. Brigham E O. The Fast Fourier Transform and Its Applications. Englewood Cliffs: Prentice-Hall, 1988

    Google Scholar 

  62. Duhamel P, Vetterli M. Fast Fourier transforms: A tutorial review and a state of the art. Signal Processing, 1990, 19(4): 259–299

    Article  MATH  MathSciNet  Google Scholar 

  63. Zghal S, Bouazizi M L, Bouhaddi N. Reduced-order model for nonlinear dynamic analysis of viscoelastic sandwich structures in time domain. In: Proceedings of International Conference on Structure Nonlinear Dynamics and Diagnosis. EDP Sciences, 2014, 08003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujin Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Hu, Y., Deng, W. et al. Dynamics of structural systems with various frequency-dependent damping models. Front. Mech. Eng. 10, 48–63 (2015). https://doi.org/10.1007/s11465-015-0330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-015-0330-5

Keywords

Navigation