Skip to main content
Log in

A survey on assembly lines and its types

  • Review Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Assembly lines are useful for mass production of standard as well as customized products. Line balancing is an important issue, in this regard an optimal or near optimal balance can provide a fruitful savings in the initial cost and also in the running cost of such production systems. A survey of different problems in different types of assembly lines and some of the critical and on going research areas are highlighted here. The provided research information is momentous for the research community in assembly line area to proceed further in the presented issues of assembly lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shtub A, Dar-El E M. A methodology for the selection of assembly systems. International Journal of Production Research, 1989, 27(1): 175–186

    Article  Google Scholar 

  2. Mather H. Competitive manufacturing. Prentice Hall, Englewood Cliffs, NJ, 1989

    Google Scholar 

  3. Pine B J. Mass customization: The new frontier in business competition. Harvard Business School Press, Boston, Mass, 1993

    Google Scholar 

  4. Becker C, Scholl A. A survey on problems and methods in generalized assembly line balancing. European Journal of Operational Research, 2006, 168(3): 694–715

    Article  MATH  MathSciNet  Google Scholar 

  5. Nils Boysen, Malte Fliedner, Armin Scholl. A classification of assembly line balancing problems. European Journal of Operational Research, 2007, 2007: 674–693.

    Article  Google Scholar 

  6. Baybars I. A survey of exact algorithms for the simple assembly line balancing problem. Management Science, 1986, 32(8): 909–932

    Article  MATH  MathSciNet  Google Scholar 

  7. Ghosh S, Gagnon R. A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems. International Journal of Production Research, 1989, 27(4): 637–670

    Article  Google Scholar 

  8. Erel E, Sarin S. A survey of the assembly line balancing procedures. Production Planning and Control, 1998, 9(5): 414–434

    Article  Google Scholar 

  9. Scholl A, Becker C. State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research, 2006, 168(3): 666–693

    Article  MATH  MathSciNet  Google Scholar 

  10. Boysen N, Fliedner M, Scholl A. Assembly line balancing: Which model to use when? International Journal of Production Economics, 2008, 111(2): 509–528

    Article  Google Scholar 

  11. Urban T L, Chiang W C. An optimal piecewise-linear program for the U-line balancing problem with stochastic task times. European Journal of Operational Research, 2006, 168(3): 109–120

    Article  MathSciNet  Google Scholar 

  12. Altiparmak A, Bugak A, Dengiz B. Optimization of buffer sizes in assembly systems using intelligent techniques. In Proceedings of Winter Simulation Conference, San Diego, USA, 2002, 1157–1162.

    Chapter  Google Scholar 

  13. D’Souza K, Khator S. System reconfiguration to avoid deadlocks in automated manufacturing systems. Computers & Industrial Engineering, 1997, 32(2): 445–465

    Article  Google Scholar 

  14. Hamada M, Martz H, Berg E, Koehler A. Optimizing the productbased avaibility of a buffered industrial process. Reliability Engineering & System Safety, 2006, 91(9): 1039–1048

    Article  Google Scholar 

  15. Battini D, Faccio M, Persona A, Sgarbossa F. Design of the optimal feeding policy in an assembly system. International Journal of Production Economics, 2009, 121(1): 233–254

    Article  Google Scholar 

  16. Gershwin S, Schor J. Efficient algorithms for buffer space allocation. Annals of Operations Research, 2000, 93(1/4): 117–144

    Article  MATH  MathSciNet  Google Scholar 

  17. Thomopoulos N T. Mixed model line balancing with smoothed station assignments. Management Science, 1970, 16(9): 593–603

    Article  MATH  Google Scholar 

  18. Dar-El E M, Nadivi A. A mixed-model sequencing application. International Journal of Production Research, 1981, 19(1): 69–84

    Article  Google Scholar 

  19. Kim Y K, Kim Y J, Kim Y, 0, 0. Genetic algorithms for assembly line balancing with various objectives. Computers & Industrial Engineering, 1996, 30(3): 397–409

    Article  Google Scholar 

  20. Simaria A S, Vilarinho P M. A genetic algorithm based approach to the mixed model assembly line balancing problem of type II. Computers & Industrial Engineering, 2004, 47(4): 391–407

    Article  Google Scholar 

  21. Mansouri S A. A multi-objective genetic algorithm for mixed-model sequencing on JIT assembly lines. European Journal of Operational Research, 2005, 167(3): 696–716

    Article  MATH  MathSciNet  Google Scholar 

  22. Karabati S, Sayin S. Assembly line balancing in a mixed-model sequencing environment with synchronous transfers. European Journal of Operational Research, 2003, 149(2): 417–429

    Article  MATH  MathSciNet  Google Scholar 

  23. Kim Y K, Kim J Y, Kim Y. A coevolutionary algorithm for balancing and sequencing in mixed model assembly lines. Applied Intelligence, 2000a, 13(3): 247–258

    Article  Google Scholar 

  24. Kim Y K, Kim J Y, Kim Y A. An endosymbiotic evolutionary algorithm for the integration of balancing and sequencing in mixed-model U-lines. European Journal of Operational Research, 2006, 168(3): 838–852

    Article  MATH  MathSciNet  Google Scholar 

  25. Merengo C, Nava F, Pozzetti A. Balancing and sequencing manual mixed-model assembly lines. International Journal of Production Research, 1999, 37(12): 2835–2860

    Article  MATH  Google Scholar 

  26. Ozcan U, Cercioglu H, Gokcen H, Toklu B. Balancing and sequencing of parallel mixed-model assembly lines. International Journal of Production Research, 2010, 48(17): 5089–5113

    Article  Google Scholar 

  27. Hwang R, Katayama H. Integrated procedure of balancing and sequencing for mixed-model assembly lines: a multi-objective evolutionary approach. International Journal of Production Research, 2010, 48(21): 6417–6441

    Article  MATH  Google Scholar 

  28. Mosadegh H, Zandieh M, Fatemi Ghomi S M T. Simultaneous solving of balancing and sequencing problems with station-dependent assembly times for mixed-model assembly lines. Applied Soft Computing, 2012, 12(4): 1359–1370

    Article  Google Scholar 

  29. Boysen N. VariantenflieXfertigung, Gabler, Wiesbaden, 2005.

    Book  Google Scholar 

  30. Pinto P A, Dannenbring D G, Khumawala BM. A branch and bound algorithm for assembly line balancing with paralleling. International Journal of Production Research, 1975, 13(2): 183–196

    Article  Google Scholar 

  31. Miltenburg J, Wijngaard J. U-line Line Balancing Problem. Management Science, 1994, 40(10): 1378–1388

    Article  MATH  Google Scholar 

  32. Miltenburg J. The effect of breakdowns on U-shaped production lines. International Journal of Production Research, 2000, 38(2): 353–364

    Article  MATH  Google Scholar 

  33. Hirano H. JIT Factory Revolution. Productivity Press, Cambridge, MA, 1988.

    Google Scholar 

  34. Sekine K. One-Piece Flow. Productivity Press, Portland, OR, 1992.

    Google Scholar 

  35. Miltenburg J, Sparling D. Optimal solution algorithms for the U-line balancing problem. Working Paper. McMaster University, Hamilton, 1995.

    Google Scholar 

  36. Sparling D, Miltenburg J. The mixed-model U-line balancing problem. International Journal of Production Research, 1998, 36(2): 485–501

    Article  MATH  Google Scholar 

  37. Chand S, Zeng T. A comparison of U-line and straightline performances under stochastic task times. Manufacturing and Service Operations Management, 2001, 3(2): 138–150

    Article  Google Scholar 

  38. Guerriero F, Miltenburg J. The stochastic U-line balancing problem. Naval Research Logistics, 2003, 50(1): 31–57

    Article  MATH  MathSciNet  Google Scholar 

  39. Bartholdi J J. Balancing two-sided assembly lines: A case study. International Journal of Production Research, 1993, 31(10): 2447–2461

    Article  Google Scholar 

  40. Lee T O, Kim Y, Kim Y K. Two-sided assembly line balancing to maximize work relatedness and slackness. Computers & Industrial Engineering, 2001, 40(3): 273–292

    Article  Google Scholar 

  41. Agnetis A, Ciancimino A, Lucertini M, Pizzichella M. Balancing flexible lines for car components assembly. International Journal of Production Research, 1995, 33(2): 333–350

    Article  MATH  Google Scholar 

  42. Chica M, Cordón Ó, Damas S. An advanced multiobjective genetic algorithm design for the time and space assembly line balancing problem. Computers & Industrial Engineering, 2011, 61(1): 103–117

    Article  Google Scholar 

  43. Hamta N, Fatemi G S M T, Jolai F. Akbarpour Shirazi M. A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect. International Journal of Production Economics, 2013, 141(1): 99–111

    Article  Google Scholar 

  44. Ponnambalam S G, Aravindan P, Mogileeswar Naidu G. A multiobjective genetic algorithm for solving assembly line balancing problem. International Journal of Advanced Manufacturing Technology, 2000, 16(5): 341–352

    Article  Google Scholar 

  45. Wei N C, Chao I M, 0. A solution procedure for type E-simple assembly line balancing problem. Computers & Industrial Engineering, 2011, 61(3): 824–830

    Article  Google Scholar 

  46. Nourmohammadi A, Zandieh M. Assembly line balancing by a new multi-objective differential evolution algorithm based on TOPSIS. International Journal of Production Research, 2011, 49(10): 2833–2855

    Article  Google Scholar 

  47. Cakir B, Altiparmak F, Dengiz B. Multi-objective optimization of a stochastic assembly line balancing: a hybrid simulated annealing algorithm. Computers & Industrial Engineering, 2011, 60(3): 376–384

    Article  Google Scholar 

  48. Mcmullen P R, Tarasewich P. Multi-objective assembly line balancing via a modified ant colony optimization technique. International Journal of Production Research, 2006, 44(1): 27–42

    Article  MATH  Google Scholar 

  49. Malakooti B, Kumar A. A knowledge-based system for solving multi-objective assembly line balancing problems. International Journal of Production Research, 1996, 34(9): 2533–2552

    Article  MATH  Google Scholar 

  50. Askin R G, Zhou M. A parallel station heuristic for the mixed-model production line balancing problem. International Journal of Production Research, 1997, 35(11): 3095–3105

    Article  MATH  Google Scholar 

  51. Gokcen H, Erel E. A goal programming approach to mixed-model assembly line balancing problem. International Journal of Production Economics, 1997, 48(2): 177–185

    Article  Google Scholar 

  52. Chen R S, Lu K Y, Yu S C. A hybrid genetic algorithm approach on multi-objective of assembly planning problem. Engineering Applications of Artificial Intelligence, 2002, 15(5): 447–457

    Article  Google Scholar 

  53. Vilarinho P M, Simaria A S. A two-stage heuristic method for balancing mixed-model assembly lines with parallel workstations. International Journal of Production Research, 2002, 40(6): 1405–1420

    Article  MATH  Google Scholar 

  54. Bukchin J, Rubinovitz J. A weighted approach for assembly line design with station paralleling and equipment selection. IIE Transactions, 2003, 35(1): 73–85

    Article  Google Scholar 

  55. Gamberini R, Grassi A, Rimini B. A new multi-objective heuristic algorithm for solving the stochastic assembly line re-balancing problem. International Journal of Production Economics, 2006, 102(2): 226–243

    Article  Google Scholar 

  56. Baykasoglu A. Multi-rule multi-objective simulated annealing algorithm for straight and U type assembly line balancing problems. Journal of Intelligent Manufacturing, 2006, 17(2): 217–232

    Article  MathSciNet  Google Scholar 

  57. Nearchou A C. Multi-objective balancing of assembly lines by population heuristics. International Journal of Production Research, 2008, 46(8): 2275–2297

    Article  MATH  Google Scholar 

  58. Hwang R K, Katayama H, Gen M. U-shaped assembly line balancing problem with genetic algorithm. International Journal of Production Research, 2008, 46(16): 4637–4649

    Article  MATH  Google Scholar 

  59. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multi objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197

    Article  Google Scholar 

  60. Carlos A. Coello Coello and Nareli Cruz Cortes. Solving Multi objective Optimization Problems using an Artificial Immune System. Genetic Programming and Evolvable Machines, 2005, 6: 163–190

    Article  Google Scholar 

  61. Agrawal S, Dashora Y, Tiwari M K, Son Y J. Interactive particle swarm: a Pareto-adaptive metaheuristic to multiobjective optimization. IEEE Transactions on Systems, Man, and Cybernetics. Part A, Systems and Humans, 2008, 38(2): 258–277

    Article  Google Scholar 

  62. Yen G G, Leong W F, 0. Dynamic multiple swarms in multiobjective particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics. Part A, Systems and Humans, 2009, 39(4): 1013–1027

    Article  Google Scholar 

  63. Wang Y, Dang C, Li H, Han L, Wei J. A clustering multi-objective evolutionary algorithm based on orthogonal and uniform design, in: Proceeding of Congress on Evolutionary Computation. CEC’ 09, 2009, 2927–2933.

    Google Scholar 

  64. Zamuda A, Brest J, Boskovic B, Zumer V. Differential evolution with self adaptation and local search for constrained multiobjective optimization, in: Proceeding of Congress on Evolutionary Computation. CEC’ 09, 2009, 192–202.

    Google Scholar 

  65. Kukkonen S, Lampinen J. Performance assessment of generalized differential evolution with a given set of constrained multi-objective test problems, in: Proceeding of Congress on Evolutionary Computation. CEC’ 09, 2009, 1943–1950.

    Google Scholar 

  66. Yang C, Gao J, Sun L. A multi-objective genetic algorithm for mixed-model assembly line rebalancing. Computers & Industrial Engineering, 2013, 65(1): 109–116

    Article  Google Scholar 

  67. Johnson R V. A branch and bound algorithm for assembly line balancing problems with formulation irregularities. Management Science, 1983, 29(11): 1309–1324

    Article  MATH  Google Scholar 

  68. Boucher T O. Choice of assembly line design under task learning. International Journal of Production Research, 1978, 25(4): 513–524

    Article  Google Scholar 

  69. Chakravarty A K. Line balancing with task learning effects. IIE Transactions, 1988, 20(2): 186–193

    Article  MathSciNet  Google Scholar 

  70. Shin D. An efficient heuristic for solving stochastic assembly line balancing problems. Computers & Industrial Engineering, 1990, 18(3): 285–295

    Article  Google Scholar 

  71. Buzacott J A. Abandoning the moving assembly line: Models of human operators and job sequencing. International Journal of Production Research, 1990, 28(5): 821–839

    Article  Google Scholar 

  72. Robinson LW, McClain J O, Thomas L J. The good, the bad and the ugly: Quality on an assembly line. International Journal of Production Research, 1990, 28(5): 963–980

    Article  Google Scholar 

  73. Hillier F S, So K C. The effect of machine breakdowns and interstage storage on the performance of production line systems. International Journal of Production Research, 1991, 29(10): 2043–2055

    Article  MATH  Google Scholar 

  74. Pike R, Martin G E. The bowl phenomenon in unpaced lines. International Journal of Production Research, 1994, 32(3): 483–499

    Article  MATH  Google Scholar 

  75. McMullen P R, Tarasewich P. Using ant techniques to solve the assembly line balancing problem. IIE Transactions, 2003, 35(7): 605–607

    Article  Google Scholar 

  76. Zhao X, Liu J, Ohn K, et al.. Modeling and analysis of a mixed-model assembly line with stochastic operation times. Naval Research Logistics, 2007, 54(6): 681–691

    Article  MATH  MathSciNet  Google Scholar 

  77. Hop N V. A heuristic solution for fuzzy mixed-model line balancing problem. European Journal of Operational Research, 2006, 168(3): 798–810

    Article  MATH  MathSciNet  Google Scholar 

  78. Xu W, Xiao T. Mixed model assembly line balancing problem with fuzzy operation times and drifting operations. In: Proceeding of Winter Simulation Conference (WSC 2008). Miami, FL, USA, 2008: 1752–1760.

    Google Scholar 

  79. Moodie C L, Young H H. A heuristic method of assembly line balancing for assumptions of constant or variable work element times. Journal of Industrial Engineering, 1965, 16: 23–29

    Google Scholar 

  80. Kao E P C. Computational experience with a stochastic assembly line balancing algorithm. Computers & Operations Research, 1979, 6(2): 79–86

    Article  Google Scholar 

  81. Sniedovich M. Analysis of a preference order assembly line problem. Management Science, 1981, 27(9): 1067–1080

    Article  MATH  Google Scholar 

  82. Nkasu M M, Leung K H. A stochastic approach to assembly line balancing. International Journal of Production Research, 1995, 33(4): 975–991

    Article  MATH  Google Scholar 

  83. Kouvelis P, Yu G. Robust Discrete Optimization and Its Applications. Boston, MA, USA: Kluwer Academic Publishers, 1997.

    Book  MATH  Google Scholar 

  84. Xu W, Xiao T. Strategic Robust Mixed model assembly line balancing based on scenario planning. Tsinghua Science and Technology, 2011, 16(3): 308–314

    Article  Google Scholar 

  85. Salveson M E. The assembly line balancing problem. Journal of Industrial Engineering, 1955, 6(3): 18–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahanzeb Mirza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saif, U., Guan, Z., Wang, B. et al. A survey on assembly lines and its types. Front. Mech. Eng. 9, 95–105 (2014). https://doi.org/10.1007/s11465-014-0302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-014-0302-1

Keywords

Navigation