Skip to main content

Advertisement

Log in

Wintgen ideal submanifolds with a low-dimensional integrable distribution

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

Submanifolds in space forms satisfy the well-known DDVV inequality. A submanifold attaining equality in this inequality pointwise is called a Wintgen ideal submanifold. As conformal invariant objects, Wintgen ideal submanifolds are investigated in this paper using the framework of Möbius geometry. We classify Wintgen ideal submanfiolds of dimension m ⩽ 3 and arbitrary codimension when a canonically defined 2-dimensional distribution \(\mathbb{D}_2\) is integrable. Such examples come from cones, cylinders, or rotational submanifolds over super-minimal surfaces in spheres, Euclidean spaces, or hyperbolic spaces, respectively. We conjecture that if \(\mathbb{D}_2\) generates a k-dimensional integrable distribution \(\mathbb{D}_k\) and k < m, then similar reduction theorem holds true. This generalization when k = 3 has been proved in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryant R. Some remarks on the geometry of austere manifolds. Bol Soc Bras Mat, 1991, 21: 122–157

    Article  Google Scholar 

  2. Chen B Y. Some pinching and classification theorems for minimal submanifolds. Arch Math, 1993, 60: 568–578

    Article  MATH  Google Scholar 

  3. Chen B Y. Mean curvature and shape operator of isometric immersions in real-space forms. Glasg Math J, 1996, 38: 87–97

    Article  MATH  Google Scholar 

  4. Chen B Y. Classification of Wintgen ideal surfaces in Euclidean 4-space with equal Gauss and normal curvatures. Ann Global Anal Geom, 2010, 38: 145–160

    Article  MATH  MathSciNet  Google Scholar 

  5. Choi T, Lu Z. On the DDVV conjecture and the comass in calibrated geometry (I). Math Z, 2008, 260: 409–429

    Article  MATH  MathSciNet  Google Scholar 

  6. Dajczer M, Florit L A, Tojeiro R. On a class of submanifolds carrying an extrinsic totally umbilical foliation. Israel J Math, 2001, 125: 203–220

    Article  MATH  MathSciNet  Google Scholar 

  7. Dajczer M, Tojeiro R. A class of austere submanifolds. Illinois J Math, 2001, 45: 735–755

    MATH  MathSciNet  Google Scholar 

  8. Dajczer M, Tojeiro R. Submanifolds of codimension two attaining equality in an extrinsic inequality. Math Proc Cambridge Philos Soc, 2009, 146: 461–474

    Article  MATH  MathSciNet  Google Scholar 

  9. De Smet P J, Dillen F, Verstraelen L, Vrancken L. A pointwise inequality in submanifold theory. Arch Math, 1999, 35: 115–128

    MATH  Google Scholar 

  10. Dillen F, Fastenakels J, Van Der Veken J. Remarks on an inequality involving the normal scalar curvature. In: Proceedings of the International Congress on Pure and Applied Differential Geometry-PADGE, Brussels. Aachen: Shaker Verlag, 2007, 83–92

    Google Scholar 

  11. Ge J, Tang Z. A proof of the DDVV conjecture and its equality case. Pacific J Math, 2008, 237: 87–95

    Article  MATH  MathSciNet  Google Scholar 

  12. Guadalupe I, Rodríguez L. Normal curvature of surfaces in space forms. Pacific J Math, 1983, 106: 95–103

    Article  MATH  MathSciNet  Google Scholar 

  13. Li T, Ma X, Wang C P. Deformation of hypersurfaces preserving the Moebius metric and a reduction theorem. Adv Math, 2014, 256: 156–205

    Article  MATH  MathSciNet  Google Scholar 

  14. Li T, Ma X, Wang C P, Xie Z. Wintgen ideal submanifolds with a low-dimensional integrable distribution (II) (in preparation)

  15. Liu H L, Wang C P, Zhao G S. Möbius isotropic submanifolds in S n. Tohoku Math J, 2001, 53: 553–569

    Article  MATH  MathSciNet  Google Scholar 

  16. Lu Z. On the DDVV conjecture and the comass in calibrated geometry (II). arXiv: Math.DG/0708.2921

  17. Lu Z. Normal scalar curvature conjecture and its applications. J Funct Anal, 2011, 261: 1284–1308

    Article  MATH  MathSciNet  Google Scholar 

  18. Petrovié-torgasev M, Verstraelen L. On Deszcz symmetries of Wintgen ideal submanifolds. Arch Math, 2008, 44: 57–67

    Google Scholar 

  19. Wang C P. Möbius geometry of submanifolds in S n. Manuscripta Math, 1998, 96: 517–534

    Article  MATH  MathSciNet  Google Scholar 

  20. Wintgen P. Sur l’inégalité de Chen-Willmore. C R Acad Sci Paris, 1979, 288: 993–995

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongzhu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Ma, X. & Wang, C. Wintgen ideal submanifolds with a low-dimensional integrable distribution. Front. Math. China 10, 111–136 (2015). https://doi.org/10.1007/s11464-014-0383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-014-0383-5

Keywords

MSC

Navigation