Skip to main content
Log in

Enhancement of a hypoplastic model for granular soil–structure interface behaviour

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Modelling of interfaces in geotechnical engineering is an important issue. Interfaces between structural elements (e.g., anchors, piles, tunnel linings) and soils are widely used in geotechnical engineering. The objective of this article is to propose an enhanced hypoplastic interface model that incorporates the in-plane stresses at the interface. To this aim, we develop a general approach to convert the existing hypoplastic model with a predefined limit state surface for sands into an interface model. This is achieved by adopting reduced stress and stretching vectors and redefining tensorial operations which can be used in the existing continuum model with few modifications. The enhanced interface model and the previous model are compared under constant-load, stiffness and volume conditions. The comparison is followed by a verification of two the approaches for modelling the different surface roughness. Subsequently, a validation between available experimental data from the literature versus simulations is presented. The new enhanced model gives improved predictions by the incorporation of in-plane stresses into the model formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Arnold M (2008) Application of the intergranular strain concept to the hypoplastic modelling of non-adhesive interfaces. In: The 12th international conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), pp 747–754

  2. Arnold M, Herle I (2006) Hypoplastic description of the frictional behaviour of contacts. In: Schweiger HF (ed) Numerical methods in geotechnical engineering, sixth European conference on numerical methods in geotechnical engineering. Taylor & Francis, Graz, pp 101–106

  3. Aubry D, Modaressi A, Modaressi H (1990) A constitutive model for cyclic behaviour of interfaces with variable dilatancy. Comput Geotech 9:47–58

    Article  Google Scholar 

  4. Beer G (1985) An isoparametric joint/interface element for finite element analysis. Int J Numer Anal Methods Geomech 21:585–600

    Article  MATH  Google Scholar 

  5. Belgacem F, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4–8):263–271

    Article  MathSciNet  MATH  Google Scholar 

  6. Boulon M, Nova R (1990) Modelling of soil structure interface behavior a comparison between elastoplastic and rate type laws. Comput Geotech 9:21–46

    Article  Google Scholar 

  7. Brumund W, Leonards GA (1973) Experimental study of static and dynamic friction between sand and typical construction material. J Test Eval 1(February):162–165

    Google Scholar 

  8. Clough GW, Duncan JM (1971) Finite element analyses of retaining wall behaviour. J Soil Mech Found Div 12:1657–1673

    Google Scholar 

  9. Costa DAguiar S, Modaressi A (2011) Piles under cyclic axial loading: study of the friction fatigue and its importance in pile behavior. Can Geotech J 48(10):1537–1550

    Article  Google Scholar 

  10. Day R, Potts D (1998) The effect of interface properties on retaining wall behaviour. Int J Numer Anal Methods Geomech 22(February):1021–1033

    Article  MATH  Google Scholar 

  11. De Jong JT, Randolph MF, White DJ (2003) Interface load transfer degradation during cyclic loading: a microscale investigation. Soils Found 43(4):81–93

    Article  Google Scholar 

  12. DeJong JT, Westgate ZJ (2009) Role of initial state, material properties, and confinement condition on local and global soil–structure interface behavior. J Geotech Geoenviron Eng 135(11):1646–1660

    Article  Google Scholar 

  13. DeJong JT, White DJ, Randolph M (2006) Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry. Soils Found 46(1):15–28

    Article  Google Scholar 

  14. Desai CS, Zaman MM, Lightner JG, Siriwardane HJ (1984) Thin-layer element for interfaces and joints. Int J Numer Anal Methods Geomech 8:19–43

    Article  Google Scholar 

  15. Evgin E, Fakharian K (1996) Effect of stress paths on the behaviour of sandsteel interfaces. Can Geotech J 33:853–865

    Article  Google Scholar 

  16. Fioravante V, Ghionna VN, Pedroni S, Porcino D (1999) A constant normal stiffness direct shear box for soil–solid interface tests. Riv Ital Geotec 3:7–22

    Google Scholar 

  17. Gennaro V, Frank R (2002) Elasto-plastic analysis of the interface behaviour between granular media and structure. Comput Geotech 29(7):547–572

    Article  Google Scholar 

  18. Ghionna VN, Mortara G (2002) An elastoplastic model for sand–structure interface behaviour. Géotechnique 52(1):41–50

    Article  Google Scholar 

  19. Gómez JE (2000) Development of an extended hyperbolic model for concrete-to-soil interfaces. Ph.D. thesis, Virginia Polytechnic Institute and State University

  20. Gómez JE, Filz GM, Ebeling RM (2003) Extended hyperbolic model for sand-to-concrete interfaces. J Geotech Geoenviron Eng 129(11):993–1000

    Article  Google Scholar 

  21. Goodman RE, Taylor RL, Brekke TL (1968) A model for the mechanics of jointed rock. J Soil Mech Found Div 94(SM 3):637–659 (Proc. Paper 5937)

    Google Scholar 

  22. Gudehus G (1996) A comprehensive constitutive equation for granular materials. Soils Found 36(1):1–12

    Article  Google Scholar 

  23. Gutjahr S (2003) Optimierte Berechnung von nicht gestützten Baugrubenwänden in Sand. Ph.D. thesis no. 25, TU Dortmund

  24. Herle I, Gudehus G (1999) Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech Cohesive-Frict Mater 4:461–486

    Article  Google Scholar 

  25. Herle I, Nübel K (1999) Hypoplastic description of interface behaviour. In: Pande G, Pietruszczak S, Schweiger H (eds) Numerical models in geomechanics—NUMOG VII. A.A.Balkema, Graz, pp 53–58

  26. Hu L, Pu J (2004) Testing and modeling of soil–structure interface. J Geotech Geoenviron Eng 130(8):851–860

    Article  Google Scholar 

  27. Hu L, Pu JL (2003) Application of damage model for soil–structure interface. Comput Geotech 30(2):165–183

    Article  Google Scholar 

  28. Jaky J (1948) Pressure in silos. In: 2nd ICSMFE, pp 103–107

  29. Kolymbas D (1977) A rate-dependent constitutive equation for soils. Mech Res Commun 4(6):367–372

    Article  Google Scholar 

  30. Koval G, Chevoir F, Roux JN, Sulem J, Corfdir A (2011) Interface roughness effect on slow cyclic annular shear of granular materials. Granul Matter 13(5):525–540

    Article  Google Scholar 

  31. Lashkari A (2013) Prediction of the shaft resistance of nondisplacement piles in sand. Comput Geotech 37(January 2012):904–931

    Google Scholar 

  32. Liu H, Song E, Ling HI (2006) Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics. Mech Res Commun 33(4):515–531

    Article  MATH  Google Scholar 

  33. Liu J, Zou D, Kong X (2014) A three-dimensional state-dependent model of soil-structure interface for monotonic and cyclic loadings. Comput Geotech 61:166–177

    Article  Google Scholar 

  34. Martinez A, Frost JD, Hebeler GL (2015) Experimental study of shear zones formed at sand/steel interfaces in axial and torsional axisymmetric tests. Geotech Test J 38(4):1–20

    Article  Google Scholar 

  35. Mascarucci Y, Miliziano S, Mandolini A (2014) A numerical approach to estimate shaft friction of bored piles in sands. Acta Geotech 9(3):547–560

    Article  Google Scholar 

  36. Matsuoka H, Nakai T (1974) Stressdeformation and strength characteristics of soil under three different principal stresses. Proc Jpn Soc Civ Eng 232:59–70

    Article  Google Scholar 

  37. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohesive-Frict Mater 2(1997):279–299

    Article  Google Scholar 

  38. Peng SY, Ng CWW, Zheng G (2013) The dilatant behaviour of sandpile interface subjected to loading and stress relief. Acta Geotech 9(3):425–437

    Article  Google Scholar 

  39. Porcino D, Fioravante V, Ghionna VN, Pedroni S (2003) Interface behavior of sands from constant normal stiffness direct shear tests. Geotech Test J 26(3):1–13

    Google Scholar 

  40. Potyondy JG (1961) Skin friction between various soils and construction materials. Géotechnique 11:339–353

    Article  Google Scholar 

  41. Shahrour I, Rezaie F (1997) An elastoplastic constitutive relation for the soil–structure interface under cyclic loading. Comput Geotech 21(1):21–39

    Article  Google Scholar 

  42. Taha A, Fall M (2014) Shear behavior of sensitive marine clay-steel interfaces. Acta Geotech 9(6):969–980

    Article  Google Scholar 

  43. Tejchman J, Wu W (1995) Experimental and numerical study of sandsteel interfaces. Int J Numer Anal Methods Geomech 19(March 1993):513–536

    Article  Google Scholar 

  44. Uesugi M, Kishida H (1986) Frictional resistance at yield between dry sand and mild steel. Soils Found 26(4):139–149

    Article  Google Scholar 

  45. Uesugi M, Kishida H, Tsubakihara Y (1988) Behavior of sand particles in sand–steel friction. Soils Found 28(1):107–118

    Article  Google Scholar 

  46. Weißenfels C, Wriggers P (2015) A contact layer element for large deformations. Comput Mech 55(5):873–885

    Article  MathSciNet  MATH  Google Scholar 

  47. Weißenfels C, Wriggers P (2015) Methods to project plasticity models onto the contact surface applied to soil structure interactions. Comput Geotech 65:187–198

    Article  Google Scholar 

  48. Wernick E (1978) Skin friction of cylindrical anchors in non-cohesive soils. In: Symposium on soil reinforcing and stabilising techniques in engineering practice, Sydney, Australia, October 16–19, pp 201–219

  49. von Wolffersdorff PA (1996) Hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohesive-Frict Mater 1(3):251–271

    Article  Google Scholar 

  50. Wu W (1992) Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Ph.d thesis no. 129, Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe

  51. Wu W, Bauer E (1994) A simple hypoplastic constitutive model for sand. Int J Numer Anal Methods Geomech 18:833–862

    Article  MATH  Google Scholar 

  52. Zaman MM, Desai CS, Drumm AM (1984) Interface model for dynamic soil–structure interaction. J Geotech Eng 110:1257–1273

    Article  Google Scholar 

  53. Zeghal M, Edil TB (2002) Soil structure interaction analysis: modeling the interface. Can Geotech J 39(3):620–628

    Article  Google Scholar 

Download references

Acknowledgments

The first author greatly appreciates financial support by the German Research Foundation in the framework of the research training group 1462. The second author greatly appreciates financial support by the research Grant 15-05935S of the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Stutz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stutz, H., Mašín, D. & Wuttke, F. Enhancement of a hypoplastic model for granular soil–structure interface behaviour. Acta Geotech. 11, 1249–1261 (2016). https://doi.org/10.1007/s11440-016-0440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0440-1

Keywords

Navigation