Skip to main content
Log in

Experimental and numerical investigation into surface strength of mine tailings after biopolymer stabilization

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Penetration test has been a promising technique for characterizing the surface strength of a crusted surface. This paper presents an experimental and numerical investigation of using a flat-ended penetrometer to evaluate the surface strength of mine tailings (MT) treated with biopolymer solutions of different concentrations. The experimental results show that the infiltration depth of biopolymer solution into dry MT decreases with the increase in biopolymer concentration. Biopolymer stabilization effectively increases the surface strength and cracking resistance of MT, and the increase is greater when the biopolymer concentration is higher. To further explore how biopolymer stabilization increases the surface strength and crack resistance of MT, numerical simulations using discrete element method were carried out to study the penetration tests on MT treated with biopolymer solutions of different concentrations. The simulation results show that the inter-particle tensile and shear strengths both increase with higher biopolymer concentration, indicating that more biopolymer induces larger inter-particle bonding and thus increases the surface strength of MT. The simulation results also confirm the delayed formation of cracks on MT after biopolymer stabilization from a microscale perspective, leading to a better understanding of biopolymer stabilization of MT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Arroyo M, Butlanska J, Gens A, Calvetti F, Jamiolkowski M (2010) Cone penetration tests in a virtual calibration chamber. Géotechnique 61(6):525–531. doi:10.1680/geot.9.P.067

    Article  Google Scholar 

  2. ASTM (2006) Standard classification of soils for engineering purposes. D2487-06, West Conshohocken, PA

  3. Bea SA, Ayora C, Carrera J, Saaltink MW, Dold B (2010) Geochemical and environmental controls on the genesis of soluble efflorescent salts in Coastal Mine Tailings Deposits: a discussion based on reactive transport modeling. J Contam Hydrol 111(1–4):65–82. doi:10.1016/j.jconhyd.2009.12.005

    Article  Google Scholar 

  4. Blight GE (2008) Wind erosion of waste impoundments in arid climates and mitigation of dust pollution. Waste Manag Res 26(6):523–533. doi:10.1177/0734242x07082027

    Article  Google Scholar 

  5. Bolander P, Yamada A (1999) Dust palliative selection and application guide. Project Report 9977-1207-SDTDC, USDA San Dimas Technology and Development Center, San Dimas, CA

  6. Butlanska J, Arroyo M, Gens A, O’Sullivan C (2013) Multi-scale analysis of cone penetration test (CPT) in a virtual calibration chamber. Can Geotech J 51(1):51–66. doi:10.1139/cgj-2012-0476

    Article  Google Scholar 

  7. Chen R, Zhang L, Budhu M (2013) Biopolymer stabilization of mine tailings. J Geotech Geoenviron Eng 139(10):1802–1807. doi:10.1061/(asce)gt.1943-5606.0000902

    Article  Google Scholar 

  8. Chen R, Lee I, Zhang L (2015) Biopolymer stabilization of mine tailings for dust control. J Geotech Geoenviron Eng 141(2):04014100–04014110. doi:10.1061/(ASCE)GT.1943-5606.0001240

    Article  Google Scholar 

  9. Chepil W, Woodruff N (1963) The physics of wind erosion and its control. Adv Agron 15:211–302

    Article  Google Scholar 

  10. Copeland CR, Eisele TC, Chesney DJ, Kawatra SK (2008) Factors influencing dust suppressant effectiveness. Miner Metall Process J 25(4):215–222

    Google Scholar 

  11. Cundall PA (2001) A discontinuous future for numerical modelling in geomechanics? Proc ICE-Geotech Eng 149(1):41–47

    Article  Google Scholar 

  12. Fuller J, Marsden L (2004) Practical dust control agent and application for alkaline ponds and playas. SME Annu Meet Prepr 2004:557–590

    Google Scholar 

  13. Gillette DA (1977) Fine particulate emissions due to wind erosion. Trans ASAE (Am Soc Agric Eng) 20:890–897

    Article  Google Scholar 

  14. Gillette DA, Adams J, Muhs D, Kihl R (1982) Threshold friction velocities and rupture moduli for crusted desert soils for the input of soil particles into the air. J Geophys Res Oceans 87(C11):9003–9015. doi:10.1029/JC087iC11p09003

    Article  Google Scholar 

  15. Huang A-B, Ma MY (1994) An analytical study of cone penetration tests in granular material. Can Geotech J 31(1):91–103. doi:10.1139/t94-010

    Article  MathSciNet  Google Scholar 

  16. Jiang MJ, Yu HS, Harris D (2006) Discrete element modelling of deep penetration in granular soils. Int J Numer Anal Methods Geomech 30(4):335–361. doi:10.1002/nag.473

    Article  MATH  Google Scholar 

  17. Karimi S (1998) A study of geotechnical applications of biopolymer treated soils with an emphasis on silt. PhD dissertation, University of Southern California, Los Angeles, CA

  18. Kavouras IG, Etyemezian V, Nikolich G, Gillies J, Sweeney M, Young M, Shafer D (2009) A new technique for characterizing the efficacy of fugitive dust suppressants. J Air Waste Manag Assoc 59(5):603–612. doi:10.3155/1047-3289.59.5.603

    Article  Google Scholar 

  19. Kim D, Quinlan M, Yen TF (2009) Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems. Waste Manag (Oxf) 29(1):321–328. doi:10.1016/j.wasman.2008.01.022

    Article  Google Scholar 

  20. Langston G, McKenna Neuman C (2005) An experimental study on the susceptibility of crusted surfaces to wind erosion: a comparison of the strength properties of biotic and salt crusts. Geomorphology 72(1–4):40–53. doi:10.1016/j.geomorph.2005.05.003

    Article  Google Scholar 

  21. Lin J, Wu W (2012) Numerical study of miniature penetrometer in granular material by discrete element method. Philos Mag 92(28–30):3474–3482. doi:10.1080/14786435.2012.706373

    Article  Google Scholar 

  22. Lobo-Guerrero S, Vallejo LE (2005) DEM analysis of crushing around driven piles in granular materials. Géotechnique 55(8):617–623. doi:10.1680/geot.2005.55.8.617

    Article  Google Scholar 

  23. Lobo-Guerrero S, Vallejo LE (2007) Influence of pile shape and pile interaction on the crushable behavior of granular materials around driven piles: DEM analyses. Granul Matter 9(3–4):241–250. doi:10.1007/s10035-007-0037-3

    Article  Google Scholar 

  24. Lu H, Shao Y (1999) A new model for dust emission by saltation bombardment. J Geophys Res Atmos 104(D14):16827–16842. doi:10.1029/1999jd900169

    Article  Google Scholar 

  25. Mak J, Chen Y, Sadek MA (2012) Determining parameters of a discrete element model for soil–tool interaction. Soil Tillage Res 118:117–122. doi:10.1016/j.still.2011.10.019

    Article  Google Scholar 

  26. O’Brien P, McKenna Neuman C (2012) A wind tunnel study of particle kinematics during crust rupture and erosion. Geomorphology 173–174:149–160. doi:10.1016/j.geomorph.2012.06.005

    Article  Google Scholar 

  27. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364. doi:10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  28. Rice MA, Willetts BB, McEwan IK (1996) Wind erosion of crusted soil sediments. Earth Surf Process Landf 21(3):279–293. doi:10.1002/(SICI)1096-9837(199603)21:3<279:aid-esp633>3.0.CO;2-A

    Article  Google Scholar 

  29. Rice MA, Mullins CE, McEwan IK (1997) An analysis of soil crust strength in relation to potential abrasion by saltating particles. Earth Surf Process Landf 22(9):869–883. doi:10.1002/(SICI)1096-9837(199709)22:9<869:aid-esp785>3.0.co;2-p

    Article  Google Scholar 

  30. Richards L (1953) Modulus of rupture as an index of crusting of soil. Soil Sci Soc Am J 17(4):321–323

    Article  MathSciNet  Google Scholar 

  31. Skidmore E, Powers D (1982) Dry soil-aggregate stability: energy-based index. Soil Sci Soc Am J 46(6):1274–1279

    Article  Google Scholar 

  32. Steevens J, Suedel B, Gibson A, Kennedy A, Blackburn W, Splichal D, Pierce J (2007) Environmental evaluation of dust stabilizer products. Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianyang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Ding, X., Ramey, D. et al. Experimental and numerical investigation into surface strength of mine tailings after biopolymer stabilization. Acta Geotech. 11, 1075–1085 (2016). https://doi.org/10.1007/s11440-015-0420-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-015-0420-x

Keywords

Navigation