Skip to main content
Log in

Stabilized single-point 4-node quadrilateral element for dynamic analysis of fluid saturated porous media

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

An accurate and efficient low-order quadrilateral mixed up element suitable for dynamic analysis of fluid saturated porous media is presented. The element uses physical hourglass stabilization to facilitate single-point integration for the solid phase, and non-residual stabilization of the fluid phase to circumvent instability in the incompressible-impermeable limit due to the use of equal-order interpolation for the displacement and pressure fields. Element behavior is verified and demonstrated through several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bathe KJ (1996) Finite element procedures. Prentice Hall, Upper Saddle River

    Google Scholar 

  2. Belytschko T, Bachrach WE (1986) Efficient implementation of quadrilaterals with high coarse-mesh accuracy. Comput Methods Appl Mech Eng 54:279–301

    Article  MathSciNet  MATH  Google Scholar 

  3. Belytschko T, Bindeman LP (1991) Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Comput Methods Appl Mech Eng 88:311–340

    Article  MathSciNet  MATH  Google Scholar 

  4. Belytschko T, Bindeman LP (1993) Assumed strain stabilization of the eight node hexahedral element. Comput Methods Appl Mech Eng 105:225–260

    Article  MATH  Google Scholar 

  5. Belytschko T, Ong JS, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43:251–276

    Article  MATH  Google Scholar 

  6. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, West Sussex

    MATH  Google Scholar 

  7. Biot MA (1941) General theory of three dimensional consolidation. J Appl Phys 12:155–164

    Article  MATH  Google Scholar 

  8. Biot MA (1956) Theory of propagation of elastic waves in a fluid saturated porous solid. J Acoust Soc Am 28:168–191

    Article  MathSciNet  Google Scholar 

  9. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33:1482–1498

    Article  MathSciNet  MATH  Google Scholar 

  10. Bochev PB, Dohrmann CR, Gunzburger MD (2006) Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J Numer Anal 44(1):82–101

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New York

    Book  MATH  Google Scholar 

  12. Brezzi F, Pitäkaranta J (1984) On the stabilization of finite element approximations of the Stokes problem. In: Hackbusch W (eds) Efficient solutions of elliptic systems, notes on numerical fluid mechanics, Vieweg, Braunschweig, pp 11–19

    Google Scholar 

  13. Commend S, Truty A, Zimmermann T (2004) Stabilized finite elements applied to elastoplasticity: I. Mixed displacement-pressure formulation. Comput Methods Appl Mech Eng 193:3559–3586

    Article  MATH  Google Scholar 

  14. Elgamal A, Yang Z, Parra E, Ragheb A (2003) Modeling of cyclic mobility in saturated cohesionless soils. Int J Plast 19:883–905

    Article  MATH  Google Scholar 

  15. Flanagan DP, Belytschko T (1981) A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int J Numer Methods Eng 17:679–706

    Article  MATH  Google Scholar 

  16. Huang M, Wu S, Zienkiewicz OC (2001) Incompressible or nearly incompressible soil dynamic behavior—a new staggered algorithm to circumvent restrictions of mixed formulation. Soil Dyn Earthq Eng 21:169–179

    Article  Google Scholar 

  17. Huang M, Yue ZQ, Tham LG, Zienkiewicz OC (2004) On the stable finite element procedures for dynamic problems of saturated porous media. Int J Numer Methods Eng 61:1421–1450

    Article  MATH  Google Scholar 

  18. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet to Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods. Comput Methods Appl Mech Eng 127:387–401

    Article  MATH  Google Scholar 

  19. Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99

    Article  MathSciNet  MATH  Google Scholar 

  20. Hughes TJR, Feijóo GR, Mazzei L, Quincy JB (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 186:3–24

    Article  Google Scholar 

  21. Jacquotte OP, Oden JT (1984) Analysis of hourglass instabilities and control in underintegrated finite element methods. Comput Methods Appl Mech Eng 44:339–363

    Article  MathSciNet  MATH  Google Scholar 

  22. Joyner WB, Chen ATF (1975) Calculation of nonlinear ground response in earthquakes. Bull Seismol Soc Am 65(5):1315–1336

    Google Scholar 

  23. Lysmer J, Kuhlemeyer AM (1969) Finite dynamic model for infinite media. J Eng Mech Div ASCE 95:859–877

    Google Scholar 

  24. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div ASCE 85(EM3):67–94

    Google Scholar 

  25. PEER ground motion database (2010) PEER ground motion database for shallow crustal earthquakes in active tectonic regimes. http://peer.berkeley.edu/peer_ground_motion_database. Pacific Earthquake Engineering Research Center, University of California, Berkeley

  26. Prevost JH (1982) Nonlinear transient phenomena in saturated porous media. Comput Methods Appl Mech Eng 30:3–8

    Article  MATH  Google Scholar 

  27. Prevost JH (1985) A simple plasticity theory for frictional cohesionless soils. Soil Dyn Earthq Eng 4:9–17

    Google Scholar 

  28. Prevost JH (1985) Wave propagation in fluid-saturated porous media: An efficient finite element procedure. Soil Dyn Earthq Eng 4:183–202

    Google Scholar 

  29. Reese S (2003) On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo-mechanical coupling in plane strain problems. Int J Numer Methods Eng 57:1095–1127

    Article  MATH  Google Scholar 

  30. Reese S (2005) On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity. Comput Methods Appl Mech Eng 194:4685–4715

    Article  MATH  Google Scholar 

  31. Timoshenko S, Goodier JN (1951) Theory of Elasticity. 2nd edn. McGraw-Hill Book Company, Inc., New York

    MATH  Google Scholar 

  32. Truty A (2001) A galerkin/least-squares finite element formulation for consolidation. Int J Numer Methods Eng 52:763–786

    Article  MATH  Google Scholar 

  33. Truty A, Zimmermann T (2006) Stabilized mixed finite element formulations for materially nonlinear partially saturated two-phase media. Comput Methods Appl Mech Eng 195:1517–1546

    Article  MathSciNet  MATH  Google Scholar 

  34. Wan J (2002) Stabilized finite element methods for coupled geomechanics and multiphase flow. Ph.D. Dissertation, Stanford University

  35. White JA, Borja RI (2008) Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput Methods Appl Mech Eng 197:4353–4366

    Article  MATH  Google Scholar 

  36. Wissmann JW, Becker T, Möller H (1987) Stabilization of the zero-energy modes of under-integrated isoparametric finite elements. Comput Mech 2:289–306

    Article  MATH  Google Scholar 

  37. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

    MATH  Google Scholar 

  38. Xia K, Masud A (2009) A stabilized finite element formulation for finite deformation elastoplasticity in geomechanics. Comput Geotech 36:396–405

    Article  Google Scholar 

  39. Zienkiewicz OC (1981) Basic formulation of static and dynamic behavior of soil and other porous media. In: Martins JB (eds) Numerical Methods in Geomechanics, D. Reidel Publishing Company, Dordrecht

    Google Scholar 

  40. Zienkiewicz OC, Shiomi T (1984) Dynamic behavior of saturated porous media; the generalized Biot formulation and its numerical solution. Int J Numer Methods Geomech 8:71–96

    Article  Google Scholar 

  41. Zienkiewicz OC, Huang M, Pastor M (1994) Computational soil dynamics—a new algorithm for drained and undrained conditions. In: Siriwardane HJ, Zaman MM (eds) Computer methods and advances in geomechanics, A.A. Balkema, Rotterdam, pp 47–59

    Google Scholar 

  42. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method—its basis and fundamentals. 6th edn. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. McGann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGann, C.R., Arduino, P. & Mackenzie-Helnwein, P. Stabilized single-point 4-node quadrilateral element for dynamic analysis of fluid saturated porous media. Acta Geotech. 7, 297–311 (2012). https://doi.org/10.1007/s11440-012-0168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-012-0168-5

Keywords

Navigation