Skip to main content
Log in

Projected impacts of climate change on protected birds and nature reserves in China

  • Article
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

Knowledge about climate change impacts on species distribution at national scale is critical to biodiversity conservation and design of management programs. Although China is a biodiversity hot spot in the world, potential influence of climate change on Chinese protected birds is rarely studied. Here, we assess the impact of climate change on 108 protected bird species and nature reserves using species distribution modeling at a relatively fine spatial resolution (1 km) for the first time. We found that a large proportion of protected species would have potential suitable habitat shrink and northward range shift by 77–90 km in response to projected future climate change in 2080. Southeastern China would suffer from losing climate suitability, whereas the climate conditions in Qinghai–Tibet Plateau and northeastern China were projected to become suitable for more protected species. On average, each protected area in China would experience a decline of suitable climate for 3–4 species by 2080. Climate change will modify which species each protected area will be suitable for. Our results showed that the risk of extinction for Chinese protected birds would be high, even in the moderate climate change scenario. These findings indicate that the management and design of nature reserves in China must take climate change into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pachauri R, Allen M, Barros V et al (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change

  2. Xie X, Zheng HB, Qiao PJ (2014) Millennial climate changes since MIS 3 revealed by element records in deep-sea sediments from northern South China Sea. Chin Sci Bull 59:776–784

    Article  Google Scholar 

  3. Walther G-R (2010) Community and ecosystem responses to recent climate change. Philos Trans R Soc B 365:2019–2024

    Article  Google Scholar 

  4. Stachowicz JJ, Terwin JR, Whitlatch RB et al (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci USA 99:15497–15500

    Article  Google Scholar 

  5. Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  Google Scholar 

  6. Cramer W, Bondeau A, Woodward FI et al (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373

    Article  Google Scholar 

  7. Walther G, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  Google Scholar 

  8. Shen Z, Ma K (2014) Effects of climate change on biodiversity. Chin Sci Bull 59:4637–4638

    Article  Google Scholar 

  9. Sorte FAL, Thompson FR III (2007) Poleward shifts in winter ranges of North American birds. Ecology 88:1803–1812

    Article  Google Scholar 

  10. Hitch AT, Leberg PL (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conserv Biol 21:534–539

    Article  Google Scholar 

  11. Şekercioğlu Ç, Schneider SH, Fay JP et al (2008) Climate change, elevational range shifts, and bird extinctions. Conserv Biol 22:140–150

    Article  Google Scholar 

  12. Şekercioğlu Ç, Primack R, Wormworth J (2012) The effects of climate change on tropical birds. Biol Conserv 148:1–18

    Article  Google Scholar 

  13. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32

    Article  Google Scholar 

  14. Araújo MB, Cabeza M, Thuiller W et al (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Change Biol 10:1618–1626

    Article  Google Scholar 

  15. Araújo MB, Alagador D, Cabeza M et al (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

    Article  Google Scholar 

  16. Wu X, Lin X, Zhang Y et al (2014) Impacts of climate change on ecosystem in Priority Areas of Biodiversity Conservation in China. Chin Sci Bull 59:4668–4680

    Article  Google Scholar 

  17. Thuiller W, Midgley GF, Hughes GO et al (2006) Endemic species and ecosystem sensitivity to climate change in Namibia. Glob Change Biol 12:759–776

    Article  Google Scholar 

  18. Thomas C, Cameron A, Green R et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  Google Scholar 

  19. Qiu C, Shen Z, Peng P et al (2014) How does contemporary climate versus climate change velocity affect endemic plant species richness in China? Chin Sci Bull 59:4660–4667

    Article  Google Scholar 

  20. Thuiller W, Lavorel S, Araujo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecol Biogeogr 14:347–357

    Article  Google Scholar 

  21. Midgley GF, Hannah L, Millar D et al (2002) Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Global Ecol Biogeogr 11:445–451

    Article  Google Scholar 

  22. Lawton JH, Daily G, Newton I (1994) Population dynamic principles [and discussion]. Philos Trans R Soc Lond B Biol Sci 344:61–68

    Article  Google Scholar 

  23. Coetzee B, Robertson M, Erasmus B et al (2009) Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change. Global Ecol Biogeogr 18:701–710

    Article  Google Scholar 

  24. Hannah L, Midgley G, Millar D (2002) Climate change-integrated conservation strategies. Global Ecol Biogeogr 11:485–495

    Article  Google Scholar 

  25. Amano T, Sutherland WJ (2013) Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc Biol Sci B 280:2012–2649

    Article  Google Scholar 

  26. Zhang W (1998) China’s biodiversity: a country study. China Environmental Science Press, Beijing

    Google Scholar 

  27. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  Google Scholar 

  28. Li R, Tian H, Li X (2010) Climate change induced range shifts of Galliformes in China. Integr Zool 5:154–163

    Article  Google Scholar 

  29. Hu J, Hu H, Jiang Z (2010) The impacts of climate change on the wintering distribution of an endangered migratory bird. Oecologia 164:555–565

    Article  Google Scholar 

  30. Sun Q, Zhang Z (1999) The impact of climate warming on the distribution of Chinese birds. Chin J Zool 35:45–48

    Google Scholar 

  31. Ma ZJ, Li WJ, Wang ZJ (2000) Natural conservation of red-crowned cranes. Qinghua University Press, Beijing

    Google Scholar 

  32. Wu R, Zhang S, Yu DW et al (2011) Effectiveness of China’s nature reserves in representing ecological diversity. Front Ecol Environ 9:383–389

    Article  Google Scholar 

  33. Guillera-Arroita G, Lahoz-Monfort JJ, Elith J et al (2015) Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecol Biogeogr 24:276–292

    Article  Google Scholar 

  34. Devictor V, Whittaker RJ, Beltrame C (2010) Beyond scarcity: citizen science programmes as useful tools for conservation biogeography. Divers Distrib 16:354–362

    Article  Google Scholar 

  35. Zheng G (2011) A checklist on the classification and distribution of the birds of China. Science Press, Beijing

    Google Scholar 

  36. Zhang C, Ding C (2007) The site record database for Chinese galliformes and its application. Chin J Zool 42:73–78

    Google Scholar 

  37. Bonney R, Cooper CB, Dickinson J et al (2009) Citizen science: a developing tool for expanding science knowledge and scientific literacy. Bio Sci 59:977–984

    Google Scholar 

  38. Hurlbert AH, Liang Z (2012) Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change. PLoS One 7:e31662

    Article  Google Scholar 

  39. Dickinson JL, Shirk J, Bonter D et al (2012) The current state of citizen science as a tool for ecological research and public engagement. Front Ecol Environ 10:291–297

    Article  Google Scholar 

  40. Cooper CB, Dickinson J, Phillips T et al (2007) Citizen science as a tool for conservation in residential ecosystems. Ecol Soc 12:11

    Google Scholar 

  41. Bird TJ, Bates AE, Lefcheck JS et al (2014) Statistical solutions for error and bias in global citizen science datasets. Biol Conserv 173:144–154

    Article  Google Scholar 

  42. Dickinson JL, Zuckerberg B, Bonter DN (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–172

    Article  Google Scholar 

  43. Snäll T, Kindvall O, Nilsson J et al (2011) Evaluating citizen-based presence data for bird monitoring. Biol Conserv 144:804–810

    Article  Google Scholar 

  44. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  45. Austin M (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Article  Google Scholar 

  46. Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, New York

    Google Scholar 

  47. Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274

    Article  Google Scholar 

  48. Austin M, Van Niel K (2011) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38:1–8

    Article  Google Scholar 

  49. Synes NW, Osborne PE (2011) Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change. Global Ecol Biogeogr 20:904–914

    Article  Google Scholar 

  50. Liu C, Berry P, Dawson T et al (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  51. Nenzén HK, Araújo MB (2011) Choice of threshold alters projections of species range shifts under climate change. Ecol Model 222:3346–3354

    Article  Google Scholar 

  52. Beaumont L, Hughes L, Pitman A (2008) Why is the choice of future climate scenarios for species distribution modelling important? Ecol Lett 11:1135–1146

    Google Scholar 

  53. Thuiller W, Lavorel S, Araújo MB et al (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  Google Scholar 

  54. Williams SE, Bolitho EE, Fox S (2003) Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc R Soc Lond B Biol Sci 270:1887–1892

    Article  Google Scholar 

  55. Li X, Liang L, Gong P et al (2012) Bird watching in China reveals bird distribution changes. Chin Sci Bull 57:649–656

    Google Scholar 

  56. Zheng G, Wang Q (1998) China red data book of endangered animals: aves. Science Press, Beijing

    Google Scholar 

  57. Lei F, Qu Y, Lu J et al (2003) Conservation on diversity and distribution patterns of endemic birds in China. Biodivers Conserv 12:239–254

    Article  Google Scholar 

  58. Stockwell D, Peterson A (2002) Effects of sample size on accuracy of species distribution models. Ecol Model 148:1–13

    Article  Google Scholar 

  59. Morueta-Holme N, Fløjgaard C, Svenning JC (2010) Climate change risks and conservation implications for a threatened small-range mammal species. PLoS One 5:e10360

    Article  Google Scholar 

  60. Buermann W, Saatchi S, Smith TB et al (2008) Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J Biogeogr 35:1160–1176

    Article  Google Scholar 

  61. Araújo M, Whittaker R, Ladle R et al (2005) Reducing uncertainty in projections of extinction risk from climate change. Global Ecol Biogeogr 14:529–538

    Article  Google Scholar 

  62. Crick HQP (2004) The impact of climate change on birds. Ibis 146:48–56

    Article  Google Scholar 

  63. Arnell N (2004) Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environ Change 14:31–52

    Article  Google Scholar 

  64. Nakicenovic N, Alcamo J, Davis G et al (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  65. Hou X (2001) Vegetation Atlas of China (1: 1,000,000). Science Press, Beijing

    Google Scholar 

  66. Niu Z, Gong P, Cheng X et al (2009) Geographical characteristics of China’s wetlands derived from remotely sensed data. Sci China Ser D-Earth Sci 52:723–738

    Article  Google Scholar 

  67. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  68. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  69. Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  70. Phillips SJ, Dudík M, Elith J et al (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  Google Scholar 

  71. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  72. Fielding A, Bell J (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  73. Ponce-Reyes R, Reynoso-Rosales VH, Watson JEM et al (2012) Vulnerability of cloud forest reserves in Mexico to climate change. Nat Clim Change 2:448–452

    Article  Google Scholar 

  74. Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol 31:361–369

    Article  Google Scholar 

  75. Loyola RD, Lemes P, Faleiro FV et al (2012) Severe loss of suitable climatic conditions for marsupial species in brazil: challenges and opportunities for conservation. PLoS One 7:e46257

    Article  Google Scholar 

  76. Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027

    Article  Google Scholar 

  77. Petersoin AT, Ortega-Huerta MA, Bartley J et al (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–628

    Article  Google Scholar 

  78. Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  Google Scholar 

  79. Chen I, Hill J, Ohlemüller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  Google Scholar 

  80. Wu W, Gu S, Wu J et al (2012) Impact of climate change on distribution of breeding sites of red-crowned crane in China. J Ecol Rural Envion 28:243–248

    Google Scholar 

  81. Zhang Y, Wang Y, Zhang M et al (2014) Climate change threats to protected plants of China: an evaluation based on species distribution modeling. Chin Sci Bull 59:4652–4659

    Article  Google Scholar 

  82. Rota CT, Fletcher RJ, Evans JM et al (2011) Does accounting for imperfect detection improve species distribution models? Ecography 34:659–670

    Article  Google Scholar 

  83. Wang J, Chen Y, Shao X et al (2012) Land-use changes and policy dimension driving forces in China: present, trend and future. Land Use Policy 29:737–749

    Article  Google Scholar 

  84. Liu J, Zhang Z, Xu X et al (2010) Spatial patterns and driving forces of land use change in China during the early 21st century. J Geogr Sci 20:483–494

    Article  Google Scholar 

  85. Zhang Y, Cao L, Barter M et al (2011) Changing distribution and abundance of Swan Goose Anser cygnoides in the Yangtze River floodplain: the likely loss of a very important wintering site. Bird Conserv Int 21:36–48

    Article  Google Scholar 

  86. Dormann CF (2007) Promising the future? Global change projections of species distributions. Basic Appl Ecol 8:387–397

    Article  Google Scholar 

  87. Willis KJ, Bhagwat SA (2009) Biodiversity and climate change. Science 326:806

    Article  Google Scholar 

  88. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  89. Tylianakis JM, Didham RK, Bascompte J et al (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  Google Scholar 

  90. Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Global Ecol Biogeogr 16:743–753

    Article  Google Scholar 

  91. Pearson RG (2006) Climate change and the migration capacity of species. Trends Ecol Evol 21:111–113

    Article  Google Scholar 

  92. Schloss CA, Nuñez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc Natl Acad Sci USA 109:8606–8611

    Article  Google Scholar 

  93. Tingley MW, Monahan WB, Beissinger SR et al (2009) Birds track their Grinnellian niche through a century of climate change. Proc Natl Acad Sci USA 106:19637–19643

    Article  Google Scholar 

  94. Gaston KJ, Blackburn TM, Greenwood JJ et al (2000) Abundance–occupancy relationships. J Appl Ecol 37:39–59

    Article  Google Scholar 

  95. Beaumont LJ, Pitman AJ, Poulsen M et al (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Glob Change Biol 13:1368–1385

    Article  Google Scholar 

  96. Reddy S, Dávalos LM (2003) Geographical sampling bias and its implications for conservation priorities in Africa. J Biogeogr 30:1719–1727

    Article  Google Scholar 

  97. Zheng G (2005) A checklist on the classification and distribution of the birds of China. Science Press, Beijing

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (“863” Program) (2009AA12200101) and the National Natural Science Foundation of China (41471347). We thank Wen Hanqiuzi, Fumin Lei and Sergey Venevesky for their comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 159 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Clinton, N., Si, Y. et al. Projected impacts of climate change on protected birds and nature reserves in China. Sci. Bull. 60, 1644–1653 (2015). https://doi.org/10.1007/s11434-015-0892-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0892-y

Keywords

Navigation