Skip to main content
Log in

Epigenetics: major regulators of embryonic neurogenesis

  • Review
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

Mammalian cortical development is a dynamically and strictly regulated process orchestrated by extracellular signals and intracellular mechanisms. Recent studies show that epigenetic regulation serves as, at least in part, interfaces between genes and the environment, and also provides insight into the molecular and cellular bases of early embryonic cortical development. It is becoming increasingly clear that epigenetic regulation of cortical development occurs at multiple levels and that comprehensive knowledge of this complex regulatory landscape is essential to delineating embryonic neurogenesis.

摘要

哺乳动物大脑皮层发育是一个受细胞内、外信号途径严格调控的过程,经历了一系列重要的生物学事件,最终形成复杂而精细的神经系统。在结构与功能水平上,大脑皮层早期发育主要包括神经干细胞的自我更新、分化、迁移及最终形成正确的突触联系。表观遗传调控主要包括DNA、组蛋白、RNA的共价修饰和染色质重塑、非编码RNA的调控作用等方面。目前,越来越多的研究表明表观遗传调控在早期大脑皮层发育过程中发挥重要作用。此外,大脑皮层发育异常将导致各种神经系统疾病。该文简单总结了参与大脑皮层发育的多种表观遗传调控机制,以期促进对大脑皮层发育的认识。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  Google Scholar 

  2. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  Google Scholar 

  3. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479

    Article  Google Scholar 

  4. Ito S, D’Alessio AC, Taranova OV et al (2010) Role of tet proteins in 5mc to 5hmc conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  Google Scholar 

  5. Ooi SK, Bestor TH (2008) The colorful history of active DNA demethylation. Cell 133:1145–1148

    Article  Google Scholar 

  6. Jia G, Fu Y, Zhao X et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887

    Article  Google Scholar 

  7. Meyer KD, Saletore Y, Zumbo P et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646

    Article  Google Scholar 

  8. Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84

    Article  Google Scholar 

  9. Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12:7–18

    Article  Google Scholar 

  10. Bale TL (2015) Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 16:332–344

  11. Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432

    Article  Google Scholar 

  12. Hsieh J, Gage FH (2004) Epigenetic control of neural stem cell fate. Curr Opin Genet Dev 14:461–469

    Article  Google Scholar 

  13. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  Google Scholar 

  14. Molyneaux BJ, Arlotta P, Menezes JR et al (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437

    Article  Google Scholar 

  15. Hansen DV, Rubenstein JL, Kriegstein AR (2011) Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron 70:645–660

    Article  Google Scholar 

  16. Martinez-Cerdeno V, Noctor SC, Kriegstein AR (2006) The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb Cortex 16(Suppl 1):i152–i161

    Article  Google Scholar 

  17. Florio M, Huttner WB (2014) Neural progenitors, neurogenesis and the evolution of the neocortex. Development 141:2182–2194

    Article  Google Scholar 

  18. Metin C, Vallee RB, Rakic P et al (2008) Modes and mishaps of neuronal migration in the mammalian brain. J Neurosci 28:11746–11752

    Article  Google Scholar 

  19. Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62:1–35

    Article  Google Scholar 

  20. Greig LC, Woodworth MB, Galazo MJ et al (2013) Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 14:755–769

    Article  Google Scholar 

  21. Hori K, Nagai T, Shan W et al (2014) Cytoskeletal regulation by auts2 in neuronal migration and neuritogenesis. Cell Rep 9:2166–2179

    Article  Google Scholar 

  22. Niwa M, Kamiya A, Murai R et al (2010) Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 65:480–489

    Article  Google Scholar 

  23. Zhang C, Mejia LA, Huang J et al (2013) The x-linked intellectual disability protein PHF6 associates with the PAF1 complex and regulates neuronal migration in the mammalian brain. Neuron 78:986–993

    Article  Google Scholar 

  24. La Fata G, Gartner A, Dominguez-Iturza N et al (2014) FMRP regulates multipolar to bipolar transition affecting neuronal migration and cortical circuitry. Nat Neurosci 17:1693–1700

    Article  Google Scholar 

  25. McKinsey GL, Lindtner S, Trzcinski B et al (2013) Dlx1&2-dependent expression of zfhx1b (sip1, zeb2) regulates the fate switch between cortical and striatal interneurons. Neuron 77:83–98

    Article  Google Scholar 

  26. O’Roak BJ, Vives L, Fu W et al (2012) Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338:1619–1622

    Article  Google Scholar 

  27. Xia W, Liu Y, Jiao J (2015) Grm7 regulates embryonic neurogenesis via creb and yap. Stem Cell Rep 4:795–810

    Article  Google Scholar 

  28. Bernier R, Golzio C, Xiong B et al (2014) Disruptive chd8 mutations define a subtype of autism early in development. Cell 158:263–276

    Article  Google Scholar 

  29. Ohtaka-Maruyama C, Hirai S, Miwa A et al (2013) Rp58 regulates the multipolar-bipolar transition of newborn neurons in the developing cerebral cortex. Cell Rep 3:458–471

    Article  Google Scholar 

  30. Le Belle JE, Sperry J, Ngo A et al (2014) Maternal inflammation contributes to brain overgrowth and autism-associated behaviors through altered redox signaling in stem and progenitor cells. Stem Cell Rep 3:725–734

    Article  Google Scholar 

  31. Gallagher D, Norman AA, Woodard CL et al (2013) Transient maternal il-6 mediates long-lasting changes in neural stem cell pools by deregulating an endogenous self-renewal pathway. Cell Stem Cell 13:564–576

    Article  Google Scholar 

  32. Hashimoto-Torii K, Torii M, Fujimoto M et al (2014) Roles of heat shock factor 1 in neuronal response to fetal environmental risks and its relevance to brain disorders. Neuron 82:560–572

    Article  Google Scholar 

  33. De Pietri Tonelli D, Pulvers JN, Haffner C et al (2008) MiRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135:3911–3921

    Article  Google Scholar 

  34. Bian S, Hong J, Li Q et al (2013) MicroRNA cluster mir-17-92 regulates neural stem cell expansion and transition to intermediate progenitors in the developing mouse neocortex. Cell Rep 3:1398–1406

    Article  Google Scholar 

  35. Bond J, Roberts E, Springell K et al (2005) A centrosomal mechanism involving cdk5rap2 and cenpj controls brain size. Nat Genet 37:353–355

    Article  Google Scholar 

  36. Xu D, Zhang F, Wang Y et al (2014) Microcephaly-associated protein wdr62 regulates neurogenesis through jnk1 in the developing neocortex. Cell Rep 6:104–116

    Article  Google Scholar 

  37. Yang YJ, Baltus AE, Mathew RS et al (2012) Microcephaly gene links trithorax and rest/nrsf to control neural stem cell proliferation and differentiation. Cell 151:1097–1112

    Article  Google Scholar 

  38. Tapias A, Zhou ZW, Shi Y et al (2014) Trrap-dependent histone acetylation specifically regulates cell-cycle gene transcription to control neural progenitor fate decisions. Cell Stem Cell 14:632–643

    Article  Google Scholar 

  39. Martinez-Cerdeno V, Lemen JM, Chan V et al (2012) N-myc and gcn5 regulate significantly overlapping transcriptional programs in neural stem cells. PLoS ONE 7:e39456

    Article  Google Scholar 

  40. Nowakowski TJ, Fotaki V, Pollock A et al (2013) MicroRNA-92b regulates the development of intermediate cortical progenitors in embryonic mouse brain. Proc Natl Acad Sci USA 110:7056–7061

    Article  Google Scholar 

  41. Nowakowski TJ, Mysiak KS, Pratt T et al (2011) Functional dicer is necessary for appropriate specification of radial glia during early development of mouse telencephalon. PLoS ONE 6:e23013

    Article  Google Scholar 

  42. Kriegstein A, Noctor S, Martinez-Cerdeno V (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7:883–890

    Article  Google Scholar 

  43. Stahl R, Walcher T, De Juan Romero C et al (2013) Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153:535–549

    Article  Google Scholar 

  44. Nonaka-Kinoshita M, Reillo I, Artegiani B et al (2013) Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J 32:1817–1828

    Article  Google Scholar 

  45. Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the pten tumour suppressor. Nat Rev Mol Cell Biol 13:283–296

    Google Scholar 

  46. Groszer M, Erickson R, Scripture-Adams DD et al (2006) Pten negatively regulates neural stem cell self-renewal by modulating g0-g1 cell cycle entry. Proc Natl Acad Sci USA 103:111–116

    Article  Google Scholar 

  47. Lange C, Huttner WB, Calegari F (2009) Cdk4/cyclind1 overexpression in neural stem cells shortens g1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5:320–331

    Article  Google Scholar 

  48. Florio M, Albert M, Taverna E et al (2015) Human-specific gene arhgap11b promotes basal progenitor amplification and neocortex expansion. Science 347:1465–1470

    Article  Google Scholar 

  49. Jamuar SS, Lam AT, Kircher M et al (2014) Somatic mutations in cerebral cortical malformations. N Engl J Med 371:733–743

    Article  Google Scholar 

  50. Ferron SR, Charalambous M, Radford E et al (2011) Postnatal loss of dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475:381–385

    Article  Google Scholar 

  51. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  Google Scholar 

  52. Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    Article  Google Scholar 

  53. Borgel J, Guibert S, Li Y et al (2010) Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42:1093–1100

    Article  Google Scholar 

  54. Heyn H, Esteller M (2015) An adenine code for DNA: a second life for n6-methyladenine. Cell 161:710–713

    Article  Google Scholar 

  55. Schob H, Grossniklaus U (2006) The first high-resolution DNA “methylome”. Cell 126:1025–1028

    Article  Google Scholar 

  56. Schubeler D (2015) Function and information content of DNA methylation. Nature 517:321–326

    Article  Google Scholar 

  57. Fan G, Beard C, Chen RZ et al (2001) DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J Neurosci 21:788–797

    Google Scholar 

  58. Zhao X, Ueba T, Christie BR et al (2003) Mice lacking methyl-cpg binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci USA 100:6777–6782

    Article  Google Scholar 

  59. Zou X, Ma W, Solov’yov IA et al (2012) Recognition of methylated DNA through methyl-cpg binding domain proteins. Nucleic Acids Res 40:2747–2758

    Article  Google Scholar 

  60. Mellen M, Ayata P, Dewell S et al (2012) Mecp2 binds to 5hmc enriched within active genes and accessible chromatin in the nervous system. Cell 151:1417–1430

    Article  Google Scholar 

  61. Chahrour M, Jung SY, Shaw C et al (2008) Mecp2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–1229

    Article  Google Scholar 

  62. Fan G, Hutnick L (2005) Methyl-cpg binding proteins in the nervous system. Cell Res 15:255–261

    Article  Google Scholar 

  63. Guy J, Hendrich B, Holmes M et al (2001) A mouse mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27:322–326

    Article  Google Scholar 

  64. Goffin D, Allen M, Zhang L et al (2012) Rett syndrome mutation mecp2 t158a disrupts DNA binding, protein stability and erp responses. Nat Neurosci 15:274–283

    Article  Google Scholar 

  65. Gabel HW, Kinde B, Stroud H et al (2015) Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 522:89–93

  66. Bedogni F, Gigli CC, Pozzi D et al (2015) Defects during mecp2 null embryonic cortex development precede the onset of overt neurological symptoms. Cereb Cortex

  67. Gao Y, Su J, Guo W et al (2015) Inhibition of mir-15a promotes bdnf expression and rescues dendritic maturation deficits in mecp2-deficient neurons. Stem Cells 33:1618–1629

    Article  Google Scholar 

  68. Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    Article  Google Scholar 

  69. Shen L, Wu H, Diep D et al (2013) Genome-wide analysis reveals tet- and tdg-dependent 5-methylcytosine oxidation dynamics. Cell 153:692–706

    Article  Google Scholar 

  70. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by mll partner tet1. Science 324:930–935

    Article  Google Scholar 

  71. Guo JU, Su Y, Zhong C et al (2011) Hydroxylation of 5-methylcytosine by tet1 promotes active DNA demethylation in the adult brain. Cell 145:423–434

    Article  Google Scholar 

  72. Wheldon LM, Abakir A, Ferjentsik Z et al (2014) Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells. Cell Rep 7:1353–1361

    Article  Google Scholar 

  73. Song CX, Szulwach KE, Dai Q et al (2013) Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153:678–691

    Article  Google Scholar 

  74. Hahn MA, Qiu R, Wu X et al (2013) Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep 3:291–300

    Article  Google Scholar 

  75. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  Google Scholar 

  76. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  Google Scholar 

  77. Venkatesh S, Workman JL (2015) Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 16:178–189

    Article  Google Scholar 

  78. Raisner RM, Hartley PD, Meneghini MD et al (2005) Histone variant h2a.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123:233–248

    Article  Google Scholar 

  79. Hu G, Cui K, Northrup D et al (2013) H2a.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation. Cell Stem Cell 12:180–192

    Article  Google Scholar 

  80. Creyghton MP, Markoulaki S, Levine SS et al (2008) H2az is enriched at polycomb complex target genes in es cells and is necessary for lineage commitment. Cell 135:649–661

    Article  Google Scholar 

  81. Banaszynski LA, Wen D, Dewell S et al (2013) Hira-dependent histone h3.3 deposition facilitates prc2 recruitment at developmental loci in es cells. Cell 155:107–120

    Article  Google Scholar 

  82. Luk E, Ranjan A, Fitzgerald PC et al (2010) Stepwise histone replacement by swr1 requires dual activation with histone h2a.Z and canonical nucleosome. Cell 143:725–736

    Article  Google Scholar 

  83. Papamichos-Chronakis M, Watanabe S, Rando OJ et al (2011) Global regulation of h2a.Z localization by the ino80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144:200–213

    Article  Google Scholar 

  84. Obri A, Ouararhni K, Papin C et al (2014) Anp32e is a histone chaperone that removes h2a.Z from chromatin. Nature 505:648–653

    Article  Google Scholar 

  85. Watanabe S, Radman-Livaja M, Rando OJ et al (2013) A histone acetylation switch regulates h2a.Z deposition by the swr-c remodeling enzyme. Science 340:195–199

    Article  Google Scholar 

  86. Parthun MR (2007) Hat1: the emerging cellular roles of a type b histone acetyltransferase. Oncogene 26:5319–5328

    Article  Google Scholar 

  87. Bhaumik SR, Smith E, Shilatifard A (2007) Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 14:1008–1016

    Article  Google Scholar 

  88. Gao Y, Koppen A, Rakhshandehroo M et al (2013) Early adipogenesis is regulated through usp7-mediated deubiquitination of the histone acetyltransferase tip60. Nat Commun 4:2656

    Google Scholar 

  89. Wang J, Weaver IC, Gauthier-Fisher A et al (2010) Cbp histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein–Taybi syndrome brain. Dev Cell 18:114–125

    Article  Google Scholar 

  90. Fazzio TG, Huff JT, Panning B (2008) An RNAi screen of chromatin proteins identifies tip60-p400 as a regulator of embryonic stem cell identity. Cell 134:162–174

    Article  Google Scholar 

  91. Ogryzko VV, Schiltz RL, Russanova V et al (1996) The transcriptional coactivators p300 and cbp are histone acetyltransferases. Cell 87:953–959

    Article  Google Scholar 

  92. Sawan C, Hernandez-Vargas H, Murr R et al (2013) Histone acetyltransferase cofactor trrap maintains self-renewal and restricts differentiation of embryonic stem cells. Stem Cells 31:979–991

    Article  Google Scholar 

  93. Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discovery 7:854–868

    Article  Google Scholar 

  94. Jepsen K, Hermanson O, Onami TM et al (2000) Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102:753–763

    Article  Google Scholar 

  95. Hermanson O, Jepsen K, Rosenfeld MG (2002) N-cor controls differentiation of neural stem cells into astrocytes. Nature 419:934–939

    Article  Google Scholar 

  96. Montgomery RL, Hsieh J, Barbosa AC et al (2009) Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci USA 106:7876–7881

    Article  Google Scholar 

  97. Yamada T, Yang Y, Hemberg M et al (2014) Promoter decommissioning by the nurd chromatin remodeling complex triggers synaptic connectivity in the mammalian brain. Neuron 83:122–134

    Article  Google Scholar 

  98. Creppe C, Malinouskaya L, Volvert ML et al (2009) Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 136:551–564

    Article  Google Scholar 

  99. Riccio A (2010) Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways. Nat Neurosci 13:1330–1337

    Article  Google Scholar 

  100. Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48:491–507

    Article  Google Scholar 

  101. Mosammaparast N, Shi Y (2010) Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79:155–179

    Article  Google Scholar 

  102. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357

    Article  Google Scholar 

  103. Liu W, Tanasa B, Tyurina OV et al (2010) Phf8 mediates histone h4 lysine 20 demethylation events involved in cell cycle progression. Nature 466:508–512

    Article  Google Scholar 

  104. Taverna SD, Li H, Ruthenburg AJ et al (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040

    Article  Google Scholar 

  105. Shi Y (2007) Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet 8:829–833

    Article  Google Scholar 

  106. Tsukada Y, Fang J, Erdjument-Bromage H et al (2006) Histone demethylation by a family of jmjc domain-containing proteins. Nature 439:811–816

    Article  Google Scholar 

  107. Kleine-Kohlbrecher D, Christensen J, Vandamme J et al (2010) A functional link between the histone demethylase phf8 and the transcription factor znf711 in x-linked mental retardation. Mol Cell 38:165–178

    Article  Google Scholar 

  108. Qi HH, Sarkissian M, Hu GQ et al (2010) Histone h4k20/h3k9 demethylase phf8 regulates zebrafish brain and craniofacial development. Nature 466:503–507

    Article  Google Scholar 

  109. Qiu J, Shi G, Jia Y et al (2010) The x-linked mental retardation gene phf8 is a histone demethylase involved in neuronal differentiation. Cell Res 20:908–918

    Article  Google Scholar 

  110. Outchkourov NS, Muino JM, Kaufmann K et al (2013) Balancing of histone h3k4 methylation states by the kdm5c/smcx histone demethylase modulates promoter and enhancer function. Cell Rep 3:1071–1079

    Article  Google Scholar 

  111. Iwase S, Lan F, Bayliss P et al (2007) The x-linked mental retardation gene smcx/jarid1c defines a family of histone h3 lysine 4 demethylases. Cell 128:1077–1088

    Article  Google Scholar 

  112. Tahiliani M, Mei P, Fang R et al (2007) The histone h3k4 demethylase smcx links rest target genes to x-linked mental retardation. Nature 447:601–605

    Article  Google Scholar 

  113. Ballas N, Grunseich C, Lu DD et al (2005) Rest and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:645–657

    Article  Google Scholar 

  114. Shen T, Ji F, Yuan Z et al (2015) Chd2 is required for embryonic neurogenesis in the developing cerebral cortex. Stem Cells 33:1794–1806

    Article  Google Scholar 

  115. Jepsen K, Solum D, Zhou T et al (2007) Smrt-mediated repression of an h3k27 demethylase in progression from neural stem cell to neuron. Nature 450:415–419

    Article  Google Scholar 

  116. Huang C, Xiang Y, Wang Y et al (2010) Dual-specificity histone demethylase kiaa1718 (kdm7a) regulates neural differentiation through fgf4. Cell Res 20:154–165

    Article  Google Scholar 

  117. Zheng G, Dahl JA, Niu Y et al (2013) Alkbh5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29

    Article  Google Scholar 

  118. Wang X, He C (2014) Dynamic RNA modifications in posttranscriptional regulation. Mol Cell 56:5–12

    Article  Google Scholar 

  119. Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6a RNA methylomes revealed by m6a-seq. Nature 485:201–206

    Article  Google Scholar 

  120. Batista PJ, Molinie B, Wang J et al (2014) M(6)a RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15:707–719

    Article  Google Scholar 

  121. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

    Article  Google Scholar 

  122. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  Google Scholar 

  123. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  Google Scholar 

  124. Fineberg SK, Kosik KS, Davidson BL (2009) MicroRNAs potentiate neural development. Neuron 64:303–309

    Article  Google Scholar 

  125. McNeill E, Van Vactor D (2012) MicroRNAs shape the neuronal landscape. Neuron 75:363–379

    Article  Google Scholar 

  126. Li X, Jin P (2010) Roles of small regulatory RNAs in determining neuronal identity. Nat Rev Neurosci 11:329–338

    Article  Google Scholar 

  127. Ji F, Lv X, Jiao J (2013) The role of microRNAs in neural stem cells and neurogenesis. J Genet Genomics 40:61–66

    Article  Google Scholar 

  128. Yao B, Jin P (2014) Unlocking epigenetic codes in neurogenesis. Genes Dev 28:1253–1271

    Article  Google Scholar 

  129. Ivey KN, Srivastava D (2010) MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7:36–41

    Article  Google Scholar 

  130. Gao FB (2008) Posttranscriptional control of neuronal development by microRNA networks. Trends Neurosci 31:20–26

    Article  Google Scholar 

  131. Zhao C, Sun G, Li S et al (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor tlx in neural stem cell fate determination. Nat Struct Mol Biol 16:365–371

    Article  Google Scholar 

  132. Ristori E, Lopez-Ramirez MA, Narayanan A et al (2015) A dicer-mir-107 interaction regulates biogenesis of specific miRNAs crucial for neurogenesis. Dev Cell 32:546–560

    Article  Google Scholar 

  133. Szulwach KE, Li X, Smrt RD et al (2010) Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 189:127–141

    Article  Google Scholar 

  134. Lv X, Jiang H, Liu Y et al (2014) MicroRNA-15b promotes neurogenesis and inhibits neural progenitor proliferation by directly repressing tet3 during early neocortical development. EMBO Rep 15:1305–1314

    Article  Google Scholar 

  135. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    Article  Google Scholar 

  136. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346

    Article  Google Scholar 

  137. Ng SY, Lin L, Soh BS et al (2013) Long noncoding RNAs in development and disease of the central nervous system. Trends Genet 29:461–468

    Article  Google Scholar 

  138. Ramos AD, Andersen RE, Liu SJ et al (2015) The long noncoding RNA pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell 16:439–447

    Article  Google Scholar 

  139. Lin N, Chang KY, Li Z et al (2014) An evolutionarily conserved long noncoding RNA tuna controls pluripotency and neural lineage commitment. Mol Cell 53:1005–1019

    Article  Google Scholar 

  140. Ramos AD, Diaz A, Nellore A et al (2013) Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell 12:616–628

    Article  Google Scholar 

  141. Ng SY, Bogu GK, Soh BS et al (2013) The long noncoding RNA rmst interacts with sox2 to regulate neurogenesis. Mol Cell 51:349–359

    Article  Google Scholar 

  142. Gaspar-Maia A, Alajem A, Polesso F et al (2009) Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460:863–868

    Google Scholar 

  143. Pray-Grant MG, Daniel JA, Schieltz D et al (2005) Chd1 chromodomain links histone h3 methylation with saga- and slik-dependent acetylation. Nature 433:434–438

    Article  Google Scholar 

  144. Tuoc TC, Boretius S, Sansom SN et al (2013) Chromatin regulation by baf170 controls cerebral cortical size and thickness. Dev Cell 25:256–269

    Article  Google Scholar 

  145. Gallagher D, Voronova A, Zander MA et al (2015) Ankrd11 is a chromatin regulator involved in autism that is essential for neural development. Dev Cell 32:31–42

    Article  Google Scholar 

  146. Ronan JL, Wu W, Crabtree GR (2013) From neural development to cognition: unexpected roles for chromatin. Nat Rev Genet 14:347–359

    Article  Google Scholar 

  147. Eroglu E, Burkard TR, Jiang YR et al (2014) Swi/snf complex prevents lineage reversion and induces temporal patterning in neural stem cells. Cell 156:1259–1273

    Article  Google Scholar 

  148. Yoo AS, Staahl BT, Chen L et al (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460:642–646

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Ministry of Science and Technology (2015CB964501 and 2014CB964903), the National Natural Science Foundation of China (31371477), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA01020301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Jiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

SPECIAL TOPIC: Stem Cell, Basis and Application

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, T., Ji, F. & Jiao, J. Epigenetics: major regulators of embryonic neurogenesis. Sci. Bull. 60, 1734–1743 (2015). https://doi.org/10.1007/s11434-015-0871-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0871-3

Keywords

关键词

Navigation