Skip to main content
Log in

A Connectome Computation System for discovery science of brain

  • Article
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

Much like genomics, brain connectomics has rapidly become a core component of most national brain projects around the world. Beyond the ambitious aims of these projects, a fundamental challenge is the need for an efficient, robust, reliable and easy-to-use pipeline to mine such large neuroscience datasets. Here, we introduce a computational pipeline—namely the Connectome Computation System (CCS)—for discovery science of human brain connectomes at the macroscale with multimodal magnetic resonance imaging technologies. The CCS is designed with a three-level hierarchical structure that includes data cleaning and preprocessing, individual connectome mapping and connectome mining, and knowledge discovery. Several functional modules are embedded into this hierarchy to implement quality control procedures, reliability analysis and connectome visualization. We demonstrate the utility of the CCS based upon a publicly available dataset, the NKI–Rockland Sample, to delineate the normative trajectories of well-known large-scale neural networks across the natural life span (6–85 years of age). The CCS has been made freely available to the public via GitHub (https://github.com/zuoxinian/CCS) and our laboratory’s Web site (http://lfcd.psych.ac.cn/ccs.html) to facilitate progress in discovery science in the field of human brain connectomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42

    Article  Google Scholar 

  2. Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7:113–140

    Article  Google Scholar 

  3. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349

    Google Scholar 

  4. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  Google Scholar 

  5. Breakspear M, Jirsa V, Deco G (2010) Computational models of the brain: from structure to function. Neuroimage 52:727–730

    Article  Google Scholar 

  6. Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci 12:43–56

    Article  Google Scholar 

  7. Deco G, Jirsa VK, McIntosh AR (2013) Resting brains never rest: computational insights into potential cognitive architectures. Trends Neurosci 36:268–274

    Article  Google Scholar 

  8. Song HF, Kennedy H, Wang XJ (2014) Spatial embedding of structural similarity in the cerebral cortex. Proc Natl Acad Sci USA 111:16580–16585

    Article  Google Scholar 

  9. Chen Y, Wang S, Hilgetag CC et al (2013) Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems. PLoS Comput Biol 9:e1002937

    Article  Google Scholar 

  10. Biswal BB, Mennes M, Zuo XN et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739

    Article  Google Scholar 

  11. Seung HS (2011) Neuroscience: towards functional connectomics. Nature 471:170–172

    Article  Google Scholar 

  12. Alivisatos AP, Chun M, Church GM et al (2012) The brain activity map project and the challenge of functional connectomics. Neuron 74:970–974

    Article  Google Scholar 

  13. Smith SM, Vidaurre D, Beckmann CF et al (2013) Functional connectomics from resting-state fMRI. Trends Cogn Sci 17:666–682

    Article  Google Scholar 

  14. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  15. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  Google Scholar 

  16. 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  Google Scholar 

  17. 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65

    Article  Google Scholar 

  18. Van Essen DC, Smith SM, Barch DM et al (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79

    Article  Google Scholar 

  19. Schadt EE, Linderman MD, Sorenson J et al (2010) Computational solutions to large-scale data management and analysis. Nat Rev Genet 11:647–657

    Article  Google Scholar 

  20. Berger B, Peng J, Singh M (2013) Computational solutions for omics data. Nat Rev Genet 14:333–346

    Article  Google Scholar 

  21. Turk-Browne NB (2013) Functional interactions as big data in the human brain. Science 342:580–584

    Article  Google Scholar 

  22. Marcus DS, Olsen TR, Ramaratnam M et al (2007) The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics 5:11–34

    Google Scholar 

  23. Scott A, Courtney W, Wood D et al (2011) COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Front Neuroinform 5:33

    Article  Google Scholar 

  24. Craddock RC, Jbabdi S, Yan CG et al (2013) Imaging human connectomes at the macroscale. Nat Methods 10:524–539

    Article  Google Scholar 

  25. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194

    Article  Google Scholar 

  26. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II. Inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207

    Article  Google Scholar 

  27. Segonne F, Dale AM, Busa E et al (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22:1060–1075

    Article  Google Scholar 

  28. Segonne F, Pacheco J, Fischl B (2007) Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26:518–529

    Article  Google Scholar 

  29. Xing XX, Zhou YL, Adelstein JS et al (2011) PDE-based spatial smoothing: a practical demonstration of impacts on MRI brain extraction, tissue segmentation and registration. Magn Reson Imaging 29:731–738

    Article  Google Scholar 

  30. Zuo XN, Xing XX (2011) Effects of non-local diffusion on structural MRI preprocessing and default network mapping: statistical comparisons with isotropic/anisotropic diffusion. PLoS One 6:e26703

    Article  Google Scholar 

  31. Eskildsen SF, Coupé P, Fonov V et al (2012) BEaST: brain extraction based on nonlocal segmentation technique. Neuroimage 59:2362–2373

    Article  Google Scholar 

  32. Klein A, Andersson J, Ardekani BA et al (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46:786–802

    Article  Google Scholar 

  33. Behrens TE, Woolrich MW, Jenkinson M et al (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088

    Article  Google Scholar 

  34. Andersson JL, Skare S (2002) A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI. Neuroimage 16:177–199

    Article  Google Scholar 

  35. Chang LC, Jones DK, Pierpaoli C (2005) RESTORE: robust estimation of tensors by outlier rejection. Magn Reson Med 53:1088–1095

    Article  Google Scholar 

  36. Beaulieu C, Allen PS (1994) Determinants of anisotropic water diffusion in nerves. Magn Reson Med 31:394–400

    Article  Google Scholar 

  37. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480

    Article  Google Scholar 

  38. Greve DN, Fischl B (2009) Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48:63–72

    Article  Google Scholar 

  39. Behrens TE, Berg HJ, Jbabdi S et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34:144–155

    Article  Google Scholar 

  40. Taylor PA, Saad ZS (2013) FATCAT: (an efficient) functional and tractographic connectivity analysis toolbox. Brain Connect 3:523–535

    Article  Google Scholar 

  41. Saad ZS, Reynolds RC, Jo HJ et al (2013) Correcting brain-wide correlation differences in resting-state FMRI. Brain Connect 3:339–352

    Article  Google Scholar 

  42. Power JD, Mitra A, Laumann TO et al (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320–341

    Article  Google Scholar 

  43. Carp J (2013) Optimizing the order of operations for movement scrubbing: comment on power. Neuroimage 76:436–438

    Article  Google Scholar 

  44. Yan CG, Cheung B, Kelly C et al (2013) A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 76:183–201

    Article  Google Scholar 

  45. Satterthwaite TD, Elliott MA, Gerraty RT et al (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256

    Article  Google Scholar 

  46. Jo HJ, Saad ZS, Simmons WK et al (2010) Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Neuroimage 52:571–582

    Article  Google Scholar 

  47. Yeo BT, Krienen FM, Sepulcre J et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165

    Article  Google Scholar 

  48. Fox MD, Zhang D, Snyder AZ et al (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283

    Article  Google Scholar 

  49. Murphy K, Birn RM, Handwerker DA et al (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44:893–905

    Article  Google Scholar 

  50. Yan CG, Craddock RC, Zuo XN et al (2013) Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage 80:246–262

    Article  Google Scholar 

  51. Zuo XN, Anderson JS, Bellec P et al (2014) An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data 1:140049

  52. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17:2407–2419

    Article  Google Scholar 

  53. Mechelli A, Friston KJ, Frackowiak RS et al (2005) Structural covariance in the human cortex. J Neurosci 25:8303–8310

    Article  Google Scholar 

  54. Evans AC (2013) Networks of anatomical covariance. Neuroimage 80:489–504

    Article  Google Scholar 

  55. Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14:322–336

    Article  Google Scholar 

  56. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069

    Article  Google Scholar 

  57. Hagmann P, Cammoun L, Gigandet X et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    Article  Google Scholar 

  58. Gong G, Rosa-Neto P, Carbonell F et al (2009) Age- and gender-related differences in the cortical anatomical network. J Neurosci 29:15684–15693

    Article  Google Scholar 

  59. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    Article  Google Scholar 

  60. Zuo XN, Xing XX (2014) Test–retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav Rev 45:100–118

    Article  Google Scholar 

  61. Zuo XN, Xu T, Jiang L et al (2013) Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. Neuroimage 65:374–386

    Article  Google Scholar 

  62. Jiang L, Xu T, He Y et al (2014) Toward neurobiological characterization of functional homogeneity in the human cortex: regional variation, morphological association and functional covariance network organization. Brain Struct Funct. doi:10.1007/s00429-014-0795-8

    Google Scholar 

  63. Zang YF, He Y, Zhu CZ et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83–91

    Article  Google Scholar 

  64. Zou QH, Zhu CZ, Yang Y et al (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172:137–141

    Article  Google Scholar 

  65. Zuo XN, Di Martino A, Kelly C et al (2010) The oscillating brain: complex and reliable. Neuroimage 49:1432–1445

    Article  Google Scholar 

  66. Zang Y, Jiang T, Lu Y et al (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22:394–400

    Article  Google Scholar 

  67. Zuo XN, Kelly C, Di Martino A et al (2010) Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 30:15034–15043

    Article  Google Scholar 

  68. Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  Google Scholar 

  69. Greicius MD, Krasnow B, Reiss AL et al (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258

    Article  Google Scholar 

  70. Zuo XN, Kelly C, Adelstein JS et al (2010) Reliable intrinsic connectivity networks: test–retest evaluation using ICA and dual regression approach. Neuroimage 49:2163–2177

    Article  Google Scholar 

  71. Zuo XN, Ehmke R, Mennes M et al (2012) Network centrality in the human functional connectome. Cereb Cortex 22:1862–1875

    Article  Google Scholar 

  72. Destrieux C, Fischl B, Dale A et al (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53:1–15

    Article  Google Scholar 

  73. Wu X, Xu L, Yao L (2014) Big data analysis of the human’s functional interactions based on fMRI. Chin Sci Bull 59:5059–5065

    Article  Google Scholar 

  74. Loewe K, Grueschow M, Stoppel CM et al (2014) Fast construction of voxel-level functional connectivity graphs. BMC Neurosci 15:78

    Article  Google Scholar 

  75. Liao W, Wu GR, Xu Q et al (2014) DynamicBC: a MATLAB toolbox for dynamic brain connectome analysis. Brain Connect. doi:10.1089/brain.2014.0253

    Google Scholar 

  76. Bowman FD (2014) Brain imaging analysis. Annu Rev Stat Appl 1:61–85

    Google Scholar 

  77. Xue SW, Weng XC, He S et al (2013) Similarity representation of pattern-information fMRI. Chin Sci Bull 58:1236–1242

    Article  Google Scholar 

  78. Yang Z, Zuo XN, Wang P et al (2012) Generalized RAICAR: discover homogeneous subject (sub)groups by reproducibility of their intrinsic connectivity networks. Neuroimage 63:403–414

    Article  Google Scholar 

  79. Yang Z, LaConte S, Weng X et al (2008) Ranking and averaging independent component analysis by reproducibility (RAICAR). Neuroimage 63:403–414

    Article  Google Scholar 

  80. Kapur S, Phillips AG, Insel TR (2013) Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry 17:1174–1179

    Article  Google Scholar 

  81. Yang Z, Chang C, Xu T et al (2012) Connectivity trajectory across lifespan differentiates the precuneus from the default network. Neuroimage 89:45–56

    Article  Google Scholar 

  82. Yang Z, Xu Y, Xu T et al (2014) Brain network informed subject community detection in early-onset schizophrenia. Sci Rep 4:5549

    Google Scholar 

  83. Castellanos FX, Di Martino A, Craddock RC et al (2013) Clinical applications of the functional connectome. Neuroimage 80:527–540

    Article  Google Scholar 

  84. Dosenbach NU, Nardos B, Cohen AL et al (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361

    Article  Google Scholar 

  85. Collin G, van den Heuvel MP (2013) The ontogeny of the human connectome: development and dynamic changes of brain connectivity across the life span. Neuroscientist 19:616–628

    Article  Google Scholar 

  86. Cao M, Wang JH, Dai ZJ et al (2014) Topological organization of the human brain functional connectome across the lifespan. Dev Cogn Neurosci 7:76–93

    Article  Google Scholar 

  87. Betzel RF, Byrge L, He Y et al (2014) Changes in structural and functional connectivity among resting-state networks across the human lifespan. Neuroimage 102:345–357

    Article  Google Scholar 

  88. Chan MY, Park DC, Savalia NK et al (2014) Decreased segregation of brain systems across the healthy adult lifespan. Proc Natl Acad Sci USA 111:E4997–E5006

    Article  Google Scholar 

  89. Yeatman JD, Wandell BA, Mezer AA (2014) Lifespan maturation and degeneration of human brain white matter. Nat Commun 5:4932

    Article  Google Scholar 

  90. Gutchess A (2014) Plasticity of the aging brain: new directions in cognitive neuroscience. Science 346:579–582

    Article  Google Scholar 

  91. Di Martino A, Fair DA, Kelly C et al (2014) Unraveling the miswired connectome: a developmental perspective. Neuron 83:1335–1353

    Article  Google Scholar 

  92. Nooner KB, Colcombe SJ, Tobe RH et al (2012) The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front Neurosci 6:152

    Article  Google Scholar 

  93. Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. J R Stat Soc Ser C Appl Stat 54:507–554

    Article  Google Scholar 

  94. Multicentre Growth Reference Study Group WHO (2009) WHO Child Growth Standards: growth velocity based on weight, length and head circumference: methods and development. World Health Organization, Geneva

    Google Scholar 

  95. Rigby RA, Stasinopoulos DM (2013) Automatic smoothing parameter selection in GAMLSS with an application to centile estimation. Stat Methods Med Res 23:318–332

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Basic Research Program (973) of China (2015CB351702), the National Natural Science Foundation of China (81220108014, 81471740, 81201153, 81171409, and 81270023), the Key Research Program (KSZD-EW-TZ-002) and the Hundred Talents Program of the Chinese Academy of Sciences. Dr. Xiu-Xia Xing acknowledges the Beijing Higher Education Young Elite Teacher Project (No. YETP1593). Dr. Zhi Yang acknowledges the Foundation of Beijing Key Laboratory of Mental Disorders (2014JSJB03) and the Outstanding Young Researcher Award from Institute of Psychology, Chinese Academy of Sciences (Y4CX062008). We thank all members of the Laboratory for Functional Connectome and Development, Institute of Psychology at CAS and the attendees of the first CCS education course for their helpful feedback and suggestions for the improvement of the CCS.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Nian Zuo.

Additional information

Ting Xu and Zhi Yang contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Yang, Z., Jiang, L. et al. A Connectome Computation System for discovery science of brain. Sci. Bull. 60, 86–95 (2015). https://doi.org/10.1007/s11434-014-0698-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0698-3

Keywords

Navigation