Skip to main content
Log in

The cancer genomics and global cancer genome collaboration

  • Progress
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

All cancers arise as a result of abnormalities occurring in the DNA sequence of cancer cells, and we are now stepping into an era in which it is feasible to obtain the complete DNA sequence of large cohorts of cancer patients. The International Cancer Genome Consortium (ICGC) launched in 2007 is devoted to coordinate large-scale cancer genome studies in tumors from 50 different cancer types and/or subtypes and systematic studies of more than 25,000 cancer genomes. Several participant groups have summarized and published their data for various cancers. As the active members of ICGC, Chinese cancer genome investigators have contributed research for 13 tumor types and released some research articles about esophageal, liver, bladder, and kidney cancers. As genetic alterations in thousands of tumors have now been catalogued, the pan-cancer analysis has become the most significant role of ICGC at present. The ICGC research network will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define molecular subtypes for clinical implication, and enable the development of individual therapeutics for human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Reference

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  Google Scholar 

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  Google Scholar 

  3. Dulbecco R (1986) A turning point in cancer research: sequencing the human genome. Science 231:1055–1056

    Article  Google Scholar 

  4. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  Google Scholar 

  5. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  6. International Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  Google Scholar 

  7. International Cancer Genome C (2010) International network of cancer genome projects. Nature 464:993–998

    Article  Google Scholar 

  8. Toronto International Data Release Workshop A (2009) Prepublication data sharing. Nature 461:168–170

    Article  Google Scholar 

  9. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421

    Article  Google Scholar 

  10. Nik-Zainal S, Van Loo P, Wedge DC et al (2012) The life history of 21 breast cancers. Cell 149:994–1007

    Article  Google Scholar 

  11. Papaemmanuil E, Cazzola M, Boultwood J et al (2011) Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 365:1384–1395

    Article  Google Scholar 

  12. Malcovati L, Papaemmanuil E, Bowen DT et al (2011) Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 118:6239–6246

    Article  Google Scholar 

  13. Papaemmanuil E, Gerstung M, Malcovati L et al (2013) Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122:3616–3627 quiz 3699

    Article  Google Scholar 

  14. India Project Team of the International Cancer Genome C (2013) Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat Commun 4:2873

    Google Scholar 

  15. Jones DT, Hutter B, Jager N et al (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45:927–932

    Article  Google Scholar 

  16. Tirode F, Surdez D, Ma X et al (2014) Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov 4:1342–1353

    Article  Google Scholar 

  17. Dove ES, Joly Y, Tasse AM et al (2014) Genomic cloud computing: legal and ethical points to consider. Eur J Hum Genet. doi:10.1038/ejhg.2014.196

  18. Gonzalez-Perez A, Mustonen V, Reva B et al (2013) Computational approaches to identify functional genetic variants in cancer genomes. Nat Methods 10:723–729

    Article  Google Scholar 

  19. Wong CC, Martincorena I, Rust AG et al (2014) Inactivating CUX1 mutations promote tumorigenesis. Nat Genet 46:33–38

    Article  Google Scholar 

  20. Yan XJ, Xu J, Gu ZH et al (2011) Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 43:309–315

    Article  Google Scholar 

  21. Cao Y, Gao Z, Li L et al (2013) Whole exome sequencing of insulinoma reveals recurrent T372R mutations in YY1. Nat Commun 4:2810

    Google Scholar 

  22. Cao Y, He M, Gao Z et al (2014) Activating hotspot L205R mutation in PRKACA and adrenal Cushing’s syndrome. Science 344:913–917

    Article  Google Scholar 

  23. Guo G, Sun X, Chen C et al (2013) Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat Genet 45:1459–1463

    Article  Google Scholar 

  24. Gui Y, Guo G, Huang Y et al (2011) Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet 43:875–878

    Article  Google Scholar 

  25. Guo G, Gui Y, Gao S et al (2012) Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet 44:17–19

    Article  Google Scholar 

  26. Lin DC, Hao JJ, Nagata Y et al (2014) Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet 46:467–473

    Article  Google Scholar 

  27. Song Y, Li L, Ou Y et al (2014) Identification of genomic alterations in oesophageal squamous cell cancer. Nature 509:91–95

    Article  Google Scholar 

  28. Gao YB, Chen ZL, Li JG et al (2014) Genetic landscape of esophageal squamous cell carcinoma. Nat Genet 46:1097–1102

    Article  Google Scholar 

  29. Huang J, Deng Q, Wang Q et al (2012) Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet 44:1117–1121

    Article  Google Scholar 

  30. Li M, Zhao H, Zhang X et al (2011) Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet 43:828–829

    Article  Google Scholar 

  31. Kan Z, Zheng H, Liu X et al (2013) Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res 23:1422–1433

    Article  Google Scholar 

  32. Sung WK, Zheng H, Li S et al (2012) Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 44:765–769

    Article  Google Scholar 

  33. Tao Y, Ruan J, Yeh SH et al (2011) Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data. Proc Natl Acad Sci USA 108:12042–12047

    Article  Google Scholar 

  34. Zong C, Lu S, Chapman AR et al (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338:1622–1626

    Article  Google Scholar 

  35. Ni X, Zhuo M, Su Z et al (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci USA 110:21083–21088

    Article  Google Scholar 

  36. Hou Y, Song L, Zhu P et al (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:873–885

    Article  Google Scholar 

  37. Li Y, Xu X, Song L et al (2012) Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer. GigaScience 1:12

    Article  Google Scholar 

  38. Xu X, Hou Y, Yin X et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:886–895

    Article  Google Scholar 

  39. Yu C, Yu J, Yao X et al (2014) Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res 24:701–712

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (81402300). We thank Scott Edmunds for revising this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youyong Lu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Yang, H., He, J. et al. The cancer genomics and global cancer genome collaboration. Sci. Bull. 60, 65–70 (2015). https://doi.org/10.1007/s11434-014-0692-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0692-9

Keywords

Navigation