Skip to main content
Log in

Effective identification of the three particle modes generated during pulverized coal combustion

  • Articles
  • Science and Technology of Energy Sources
  • Published:
Chinese Science Bulletin

Abstract

Based on the mass fraction size distribution of aluminum (Al), an improved method for effectively identifying the modes of particulate matter from pulverized coal combustion is proposed in this study. It is found that the particle size distributions of coal-derived particulate matter actually have three modes, rather than just mere two. The ultrafine mode is mainly generated through the vaporization and condensation processes. The coarse mode is primarily formed by the coalescence of molten minerals, while the newly-found central mode is attributed to the heterogeneous condensation or adsorption of vaporized species on fine residual ash particles. The detailed investigation of the mass fraction size distribution of sulfur (S) further demonstrates the rationality and effectiveness of the mass fraction size distribution of the Al in identifying three particle modes. The results show that not only can the number of particle modes be identified in the mass fraction size distributions of the Al but also can their size boundaries be more accurately defined. This method provides new insights in elucidating particle formation mechanisms and their physico-chemical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hinds W C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York: John Wiley & Sons, 1982

    Google Scholar 

  2. Sarofim A F, Howard J B, Padia A S. Physical transformation of the mineral matter in pulverized coal under simulated combustion conditions. Combust Sci Tech, 1977, 16(3–6): 187–204

    Article  CAS  Google Scholar 

  3. Flagan R C, Friedlander S K. Particle formation in pulverized coal combustion: A review. In: Shaw D T, ed. Recent Developments in Aerosol Science. New York: Wiley-Interscience, 1978. 25–59

    Google Scholar 

  4. Neville M, Quann R J, Haynes B S, et al. Vaporization and condensation of mineral matter during pulverized coal combustion. P Combust Inst, 1981, 18: 1267–1274

    Google Scholar 

  5. McElroy M W, Carr R C, Ensor D S, et al. Size distribution of fine particles from coal combustion. Science, 1982, 215(4528): 13–19

    Article  PubMed  CAS  Google Scholar 

  6. Kang S G. Fundamental studies of mineral matter transformation during pulverized coal combustion: Residual ash formation. Ph.D. Thesis. Cambridge: Massachusetts Institute of Technology, 1991

    Google Scholar 

  7. Linak W P, Peterson T W. Effect of coal type and residence time on the submicron aerosol distribution from pulverized coal combustion. Aerosol Sci Tech, 1984, 3(1): 77–95

    Article  CAS  Google Scholar 

  8. Linak W P, Miller C A, Wendt J O L. Comparison of particle size distributions and elemental partitioning from the combustion of pulverized coal and residual fuel oil. J Air Waste Manage, 2000, 50(8): 1532–1544

    CAS  Google Scholar 

  9. Linak W P, Miller C A, Seames W S, et al. On trimodal particle size distributions in fly ash from pulverized-coal combustion. P Combust Inst, 2002, 29: 441–447

    Article  CAS  Google Scholar 

  10. Seames W S. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion. Fuel Process Tech, 2003, 81(2): 109–125

    Article  CAS  Google Scholar 

  11. Yu D, Xu M, Yao H, et al. Use of elemental size distributions in identifying particle formation modes. P Combust Inst, 2007, 31(2): 1921–1928

    Article  CAS  Google Scholar 

  12. Kauppinen E I, Pakkanen T A. Coal combustion aerosols: A field study. Environ Sci Tech, 1990, 24(12): 1811–1818

    Article  CAS  Google Scholar 

  13. Quann R J, Neville M, Janghorbani M, et al. Mineral matter and trace-element vaporization in a laboratory-pulverized coal combustion system. Environ Sci Tech, 1982, 16(11): 776–781

    Article  CAS  Google Scholar 

  14. Wigley F, Williamson J. Modelling fly ash generation for pulverised coal combustion. Prog Energ Combust, 1998, 24(4): 337–343

    Article  CAS  Google Scholar 

  15. Smith R D, Campbell J A, Nielson K K. Characterization and formation of submicron particles in coal-fired plants. Atmos Environ, 1979, 13(5): 607–617

    Article  CAS  Google Scholar 

  16. Quann R J, Sarofim A F. Vaporization of refractory oxides during pulverized coal combustion. P Combust Inst, 1982, 19: 1429–1440

    Google Scholar 

  17. Brewer L. The thermodynamic properties of the oxides and their vaporization processes. Chem Rev, 1953, 52(1): 1–75

    Article  CAS  Google Scholar 

  18. Flagan R C. Submicron particles from coal combustion. P Combust Inst, 1979, 17: 97–104

    Google Scholar 

  19. Helble J J, Sarofim A F. Factors determining the primary particle size of flame-generated inorganic aerosols. J Colloid Interf Sci, 1989, 128(2): 348–362

    Article  CAS  Google Scholar 

  20. Ramsden A R. A microscopic investigation into the formation of fly-ash during the combustion of a pulverized bituminous coal. Fuel, 1969, 48(2): 121–137

    CAS  Google Scholar 

  21. Kang S G, Heble J J, Sarofim A F, et al. Time-resolved evolution of fly ash during pulverized coal combustion. P Combust Inst, 1988, 22: 231–238

    Article  Google Scholar 

  22. Kang S G, Kerstein A R, Helble J J, et al. Simulation of residual ash formation during pulverized coal combustion: Bimodal ash particle size distribution. Aerosol Sci Tech, 1990, 13(4): 401–412

    Article  CAS  Google Scholar 

  23. Davison R L, Natusch D F S, Wallace J R, et al. Trace elements in fly ash: Dependence of concentration on particle size. Environ Sci Tech, 1974, 8(13): 1107–1113

    Article  CAS  Google Scholar 

  24. Campbell J A, Laul J C, Nielson K K, et al. Separation and chemical characterization of finely-sized fly-ash particles. Anal Chem, 1978, 50(8): 1032–1040

    Article  CAS  Google Scholar 

  25. Helble J J, Sarofim A F. Influence of char fragmentation on ash particle size distributions. Combust Flame, 1989, 76(2): 183–196

    Article  CAS  Google Scholar 

  26. Baxter L L. Char fragmentation and fly ash formation during pulverized-coal combustion. Combust Flame, 1992, 90(2): 174–184

    Article  CAS  Google Scholar 

  27. Liu G, Wu H, Gupta R P, et al. Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion. Fuel, 2000, 79(6): 627–633

    Article  CAS  Google Scholar 

  28. Holve D J. In situ measurements of flyash formation from pulverized coal. Combust Sci Tech, 1986, 44(5–6): 269–288

    Article  Google Scholar 

  29. Sadakata M, Mochizuki M, Sakai T, et al. Formation and behavior of submicron fly ash in pulverized coal combustion furnace. Combust Flame, 1988, 74(1): 71–80

    Article  CAS  Google Scholar 

  30. Joutsensaari J, Kauppinen E I, Ahonen P, et al. Aerosol formation in real scale pulverized coal combustion. J Aerosol Sci, 1992, 23: 241–244

    Article  Google Scholar 

  31. Seames W S, Fernandez A, Wendt J O L. A study of fine particulate emissions from combustion of treated pulverized municipal sewage sludge. Environ Sci Tech, 2002, 36(12): 2772–2776

    Article  CAS  Google Scholar 

  32. Graham K A, Sarofim A F. Inorganic aerosols and their role in catalyzing sulfuric acid production in furnaces. J Air Waste Manage, 1998, 48(2): 106–112

    CAS  Google Scholar 

  33. McNallen M J, Yurek G J, Elliot J F. The formation of inorganic particulates by homogeneous nucleation in gases produced by the combustion of coal. Combust Flame, 1981, 42: 45–60

    Article  Google Scholar 

  34. Graham K A. Submicron ash formation and interaction with sulfur oxides during pulverized coal combustion. Ph.D. Thesis. Cambridge: Massachusetts Institute of Technology, 1990

    Google Scholar 

  35. Amdur M O, Sarofim A F, Neville M, et al. Coal combustion aerosols and sulfur dioxide: An interdisciplinary analysis. Environ Sci Tech, 1986, 20(2): 138–145

    Article  CAS  Google Scholar 

  36. Erickson T A, Ludlow D K, Benson S A. Interaction of sodium, sulfur, and silica during coal combustion. Energ Fuel, 1991, 5(4): 539–547

    Article  CAS  Google Scholar 

  37. Raask E. Sulphate capture in ash and boiler deposits in relation to SO2 emission. Prog Energ Combust, 1982, 8(4): 261–276

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingHou Xu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 50325621, 50721005 & 50706013)

About this article

Cite this article

Yu, D., Xu, M., Yao, H. et al. Effective identification of the three particle modes generated during pulverized coal combustion. Chin. Sci. Bull. 53, 1593–1602 (2008). https://doi.org/10.1007/s11434-008-0192-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0192-x

Keywords

Navigation