Skip to main content
Log in

A new association state of solutes in nanoconfined aqueous solutions

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Recently, we have found a reversible transition between the dispersion and aggregation states of solute molecules in aqueous solutions confined in nanoscale geometry, where solutes exhibit distinct behavior in a new association state from that in the dispersion and aggregation states observed usually in macroscopic systems. However, it remains unknown whether this new association state of solute molecules found in nanoconfined systems would vanish with the system size increasing and approaching the macroscopic scale. Here, we achieve the phase diagram of solute association states by making the analyses of Gibbs free energy of solutes in nanoconfined aqueous solutions in detail. In the phase diagram, we observe a closed regime with a finite system size of nanoconfined aqueous solutions and a solute concentration range, only in which there exists the new association state of solutes with the reversible transition between the aggregation and dispersion states, and there indeed exists an upper limit of the system size for the new association state, around several tens nanometers. These findings regarding the intimate connection between the system size and the solute association behavior provides the comprehensive understanding of the association dynamics of solutes in nanoconfined environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Whitesides, and B. Grzybowski, Science 295, 2418 (2002).

    Article  ADS  Google Scholar 

  2. Q. Chen, J. K. Whitmer, S. Jiang, S. C. Bae, E. Luijten, and S. Granick, Science 331, 199 (2011).

    Article  ADS  Google Scholar 

  3. P. Tan, N. Xu, and L. Xu, Nat. Phys. 10, 73 (2013), arXiv: 1412.5788.

    Article  Google Scholar 

  4. D. Chandler, Nature 437, 640 (2005).

    Article  ADS  Google Scholar 

  5. S. Dixit, J. Crain, W. C. K. Poon, J. L. Finney, and A. K. Soper, Nature 416, 829 (2002).

    Article  ADS  Google Scholar 

  6. X. Zhou, G. Liu, K. Yamato, Y. Shen, R. Cheng, X. Wei, W. Bai, Y. Gao, H. Li, Y. Liu, F. Liu, D. M. Czajkowsky, J. Wang, M. J. Dabney, Z. Cai, J. Hu, F. V. Bright, L. He, X. C. Zeng, Z. Shao, and B. Gong, Nat. Commun. 3, 949 (2012).

    Article  ADS  Google Scholar 

  7. L. Zhao, Y. S. Tu, C. L. Wang, and H. P. Fang, Chin. Phys. Lett. 33, 038201 (2016).

    Article  ADS  Google Scholar 

  8. G. Ren, and Y. Wang, Europhys. Lett. 107, 30005 (2014), arXiv: 1312.2711.

    Article  ADS  Google Scholar 

  9. H. Bian, X. Wen, J. Li, H. Chen, S. Han, X. Sun, J. Song, W. Zhuang, and J. Zheng, Proc. Natl. Acad. Sci. 108, 4737 (2011).

    Article  ADS  Google Scholar 

  10. N. Sheng, Y. S. Tu, P. Guo, R. Z. Wan, and H. P. Fang, Sci. China-Phys. Mech. Astron. 56, 1047 (2013), arXiv: 1307.6963.

    Article  ADS  Google Scholar 

  11. X. Wei, N. Sheng, R. Z. Wan, G. H. Hu, and H. P. Fang, Sci. China-Phys. Mech. Astron. 59, 670511 (2016).

    Article  Google Scholar 

  12. F. D. Kong, N. Sheng, R. Z. Wan, G. H. Hu, and H. P. Fang, Sci. China-Phys. Mech. Astron. 59, 680511 (2016).

    Article  Google Scholar 

  13. R. Hargreaves, D. T. Bowron, and K. Edler, J. Am. Chem. Soc. 133, 16524 (2011).

    Article  Google Scholar 

  14. B. Z. Shang, Z. Wang, and R. G. Larson, J. Phys. Chem. B 113, 15170 (2009).

    Article  Google Scholar 

  15. G. Rosenthal, K. E. Gubbins, and S. H. L. Klapp, J. Chem. Phys. 136, 174901 (2012).

    Article  ADS  Google Scholar 

  16. B. Dai, D. Li, W. Xi, F. Luo, X. Zhang, M. Zou, M. Cao, J. Hu, W. Wang, G. Wei, Y. Zhang, and C. Liu, Proc. Natl. Acad. Sci. 112, 2996 (2015).

    Article  ADS  Google Scholar 

  17. G. C. L. Wong, J. X. Tang, A. Lin, Y. Li, P. A. Janmey, and C. R. Safinya, Science 288, 2035 (2000).

    Article  ADS  Google Scholar 

  18. N. Arai, K. Yasuoka, and X. C. Zeng, J. Am. Chem. Soc. 130, 7916 (2008).

    Article  Google Scholar 

  19. A. V. Sangwai, and R. Sureshkumar, Langmuir 27, 6628 (2011).

    Article  Google Scholar 

  20. Z. Wang, and R. G. Larson, J. Phys. Chem. B 113, 13697 (2009).

    Article  Google Scholar 

  21. P. Das, J. A. King, and R. Zhou, Proc. Natl. Acad. Sci. 108, 10514 (2011).

    Article  ADS  Google Scholar 

  22. M. Zhang, G. Zuo, J. Chen, Y. Gao, and H. Fang, Sci. Rep. 3, 1660 (2013).

    ADS  Google Scholar 

  23. I. W. Hamley, Chem. Commun. 51, 8574 (2015).

    Article  Google Scholar 

  24. R. Goetz, and R. Lipowsky, J. Chem. Phys. 108, 7397 (1998).

    Article  ADS  Google Scholar 

  25. J. Lei, R. Qi, G. Wei, R. Nussinov, and B. Ma, Phys. Chem. Chem. Phys. 18, 8098 (2016).

    Article  Google Scholar 

  26. P. W. Cong, and J. Yan, Sci. China-Phys. Mech. Astron. 59, 680001 (2016).

    Article  Google Scholar 

  27. M. Flytzani-Stephanopoulos, and B. C. Gates, Annu. Rev. Chem. Biomol. Eng. 3, 545 (2012).

    Article  Google Scholar 

  28. S. A. Bode, I. J. Minten, R. J. M. Nolte, and J. J. L. M. Cornelissen, Nanoscale 3, 2376 (2011).

    Article  ADS  Google Scholar 

  29. R. Narayanan, and M. A. El-Sayed, J. Phys. Chem. B 109, 12663 (2005).

    Article  Google Scholar 

  30. W. Gu, B. Zhou, T. Geyer, M. Hutter, H. Fang, and V. Helms, Angew. Chem. Int. Ed. 50, 768 (2011).

    Article  Google Scholar 

  31. S. M. Hussain, L. K. Braydich-Stolle, A. M. Schrand, R. C. Murdock, K. O. Yu, D. M. Mattie, J. J. Schlager, and M. Terrones, Adv. Mater. 21, 1549 (2009).

    Article  Google Scholar 

  32. S. Liu, L. Wei, L. Hao, N. Fang, M. W. Chang, R. Xu, Y. Yang, and Y. Chen, ACS Nano 3, 3891 (2009).

    Article  Google Scholar 

  33. Y. Morimoto, M. Horie, N. Kobayashi, N. Shinohara, and M. Shimada, Acc. Chem. Res. 46, 770 (2013).

    Article  Google Scholar 

  34. L. Zhao, C. Wang, J. Liu, B. Wen, Y. Tu, Z. Wang, and H. Fang, Phys. Rev. Lett. 112, 078301 (2014).

    Article  ADS  Google Scholar 

  35. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theor. Comput. 4, 435 (2008).

    Article  Google Scholar 

  36. W. Van Gunsteren, and H. Berendsen, Gromos-87 Manual, 1987.

    Google Scholar 

  37. J. Wedekind, D. Reguera, and R. Strey, J. Chem. Phys. 125, 214505 (2006).

    Article  ADS  Google Scholar 

  38. L. Maibaum, A. R. Dinner, and D. Chandler, J. Phys. Chem. B 108, 6778 (2004).

    Article  Google Scholar 

  39. S. Prestipino, A. Laio, and E. Tosatti, Phys. Rev. Lett. 108, 225701 (2012), arXiv: 1206.3849.

    Article  ADS  Google Scholar 

  40. R. C. Tolman, J. Chem. Phys. 17, 333 (1949).

    Article  ADS  Google Scholar 

  41. H. S. Ashbaugh, and L. R. Pratt, Rev. Mod. Phys. 78, 159 (2006).

    Article  ADS  Google Scholar 

  42. K. Henzler-Wildman, and D. Kern, Nature 450, 964 (2007).

    Article  ADS  Google Scholar 

  43. D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P. Eastwood, J. A. Bank, J. M. Jumper, J. K. Salmon, Y. Shan, and W. Wriggers, Science 330, 341 (2010).

    Article  ADS  Google Scholar 

  44. G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature 414, 188 (2001).

    Article  ADS  Google Scholar 

  45. S. Roy, and B. Bagchi, J. Phys. Chem. B 116, 2958 (2012).

    Article  Google Scholar 

  46. D. Hamelberg, and J. A. McCammon, J. Am. Chem. Soc. 126, 7683 (2004).

    Article  Google Scholar 

  47. R. Wan, J. Li, H. Lu, and H. Fang, J. Am. Chem. Soc. 127, 7166 (2005).

    Article  Google Scholar 

  48. J. Mittal, and R. B. Best, Proc. Natl. Acad. Sci. 105, 20233 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiPing Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Y., Zhao, L. & Fang, H. A new association state of solutes in nanoconfined aqueous solutions. Sci. China Phys. Mech. Astron. 59, 110511 (2016). https://doi.org/10.1007/s11433-016-0271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0271-x

Keywords

Navigation