Skip to main content
Log in

Peptide hydrogelation triggered by enzymatic induced pH switch

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

It remains challenging to develop methods that can precisely control the self-assembling kinetics and thermodynamics of peptide hydrogelators to achieve hydrogels with optimal properties. Here we report the hydrogelation of peptide hydrogelators by an enzymatically induced pH switch, which involves the combination of glucose oxidase and catalase with D-glucose as the substrate, in which both the gelation kinetics and thermodynamics can be controlled by the concentrations of D-glucose. This novel hydrogelation method could result in hydrogels with higher mechanical stability and lower hydrogelation concentrations. We further illustrate the application of this hydrogelation method to differentiate different D-glucose levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gelain, A. Horii, and S. Zhang, Macromol. Biosci. 7, 544 (2007).

    Article  Google Scholar 

  2. C. Goncalves, P. Pereira, and M. Gama, Materials 3, 1420 (2010).

    Article  ADS  Google Scholar 

  3. M. Guvendiren, H. D. Lu, and J. A. Burdick, Soft. Matter. 8, 260 (2012).

    Article  ADS  Google Scholar 

  4. C. A. Hauser, and S. Zhang, Chem. Soc. Rev. 39, 2780 (2010).

    Article  Google Scholar 

  5. T. Y. Cheng, H. C. Wu, M. Y. Huang, W. H. Chang, C. H. Lee, and T. W. Wang, Nanoscale 5, 273 (2013).

    Google Scholar 

  6. D. Das, T. Kar, and P. K. Das, Soft. Matter. 8, 2348 (2012).

    Article  ADS  Google Scholar 

  7. C. A. DeForest, and K. S. Anseth, Annu. Rev. Chem. Biomol. Eng. 3, 421 (2012).

    Article  Google Scholar 

  8. T. Dvir, B. P. Timko, D. S. Kohane, and R. Langer, Nat. Nanotechnol. 6, 13 (2011).

    Article  ADS  Google Scholar 

  9. Y. Gao, F. Zhao, Q. Wang, Y. Zhang, and B. Xu, Chem. Soc. Rev. 39, 3425 (2010).

    Article  Google Scholar 

  10. J. Zhang, Y. Zhao, S. Han, C. Chen, and H. Xu, Sci. China Chem. 57, 1634 (2014).

    Article  Google Scholar 

  11. J. Raeburn, T. O. McDonald, and D. J. Adams, Chem. Commun. 48, 9355 (2012).

    Article  Google Scholar 

  12. S. Yan, C. Zhao, X. Wu, Q. Zhang, and M. Li, Sci. China Chem. 53, 535 (2010).

    Article  Google Scholar 

  13. S. Roy, N. Javid, J. Sefcik, P. J. Halling, and R. V. Ulijn, Langmuir 28, 16664 (2012).

    Article  Google Scholar 

  14. X. Zhang, C. Dong, W. Huang, H. Wang, L. Wang, D. Ding, H. Zhou, J. Long, T. Wang, and Z. Yang, Nanoscale 7, 16666 (2015).

    Article  ADS  Google Scholar 

  15. A. M. Tang, W. J. Wang, B. Mei, W. L. Hu, M. Wu, and G. L. Liang, Sci. Rep. 3, 1848 (2013).

    ADS  Google Scholar 

  16. Y. Li, M. Qin, Y. Cao, and W. Wang, Sci. China-Phys. Mech. Astron. 57, 849 (2014).

    Article  ADS  Google Scholar 

  17. H. Geng, Q. Zong, J. You, L. Ye, A. Zhang, Z. Shao, and Z. Feng, Sci. China Chem. 59, 293 (2016).

    Article  Google Scholar 

  18. L. Lv, H. Liu, X. Chen, and Z. Yang, Colloid. Surface. B 108, 352 (2013).

    Article  ADS  Google Scholar 

  19. Y. Li, Y. Ding, M. Qin, Y. Cao, and W. Wang, Chem. Commun. 49, 8653 (2013).

    Article  Google Scholar 

  20. B. Ding, Y. Li, M. Qin, Y. Ding, Y. Cao, and W. Wang, Soft. Matter. 9, 4672 (2013).

    Article  ADS  Google Scholar 

  21. G. Chen, C. Ren, L. Wang, B. Xu, and Z. Yang, Chin. J. Chem. 30, 53 (2012).

    Article  Google Scholar 

  22. J. Gao, H. Wang, L. Wang, J. Wang, D. Kong, and Z. Yang, J. Am. Chem. Soc. 131, 11286 (2009).

    Article  Google Scholar 

  23. J. Gao, W. Zheng, D. Kong, and Z. Yang, Soft. Matter. 7, 10443 (2011).

    Article  ADS  Google Scholar 

  24. J. Gao, W. Zheng, J. Zhang, D. Guan, Z. Yang, D. Kong, and Q. Zhao, Chem. Commun. 49, 9173 (2013).

    Article  Google Scholar 

  25. Y. Gao, J. Shi, D. Yuan, and B. Xu, Nat. Commun. 3, 1033 (2012).

    Article  ADS  Google Scholar 

  26. X. Qin, W. Xie, S. Tian, J. Cai, H. Yuan, Z. Yu, G. L. Butterfoss, A. C. Khuong, and R. A. Gross, Chem. Commun. 49, 4839 (2013).

    Article  Google Scholar 

  27. S. Toledano, R. J. Williams, V. Jayawarna, and R. V. Ulijn, J. Am. Chem. Soc. 128, 1070 (2006).

    Article  Google Scholar 

  28. Z. M. Yang, K. M. Xu, Z. F. Guo, Z. H. Guo, and B. Xu, Adv. Mater. 19, 3152 (2007).

    Article  Google Scholar 

  29. L. Dong, Q. Miao, Z. Hai, Y. Yuan, and G. Liang, Anal. Chem. 87, 6475 (2015).

    Article  Google Scholar 

  30. D. Li, H. Wang, D. Kong, and Z. Yang, Nanoscale 4, 3047 (2012).

    Article  ADS  Google Scholar 

  31. C. Yang, L. Chu, Y. Zhang, Y. Shi, J. Liu, Q. Liu, S. Fan, Z. Yang, D. Ding, D. Kong, and J. Liu, ACS Appl. Mater. Interfaces 7, 2735 (2015).

    Article  Google Scholar 

  32. J. Zhang, C. Ou, Y. Shi, L. Wang, M. Chen, and Z. Yang, Chem. Commun. 50, 12873 (2014).

    Article  Google Scholar 

  33. M. Swoboda, J. Henig, H. M. Cheng, D. Brugger, D. Haltrich, N. Plumeré, and M. Schlierf, ACS Nano 6, 6364 (2012).

    Article  Google Scholar 

  34. C. Wong, K. Wong, and X. Chen, Appl. Microbiol. Biotechnol. 78, 927 (2008).

    Article  MathSciNet  Google Scholar 

  35. P. Chelikani, I. Fita, and P. C. Loewen, Cell. Mol. Life Sci. 61, 192 (2004).

    Article  Google Scholar 

  36. X. D. Xu, B. B. Lin, J. Feng, Y. Wang, S. X. Cheng, X. Z. Zhang, and R. X. Zhuo, Macromol. Rapid Commun. 33, 426 (2012).

    Article  Google Scholar 

  37. D. J. Adams, M. F. Butler, W. J. Frith, M. Kirkland, L. Mullen, and P. Sanderson, Soft Matter 5, 1856 (2009).

    Article  ADS  Google Scholar 

  38. C. Ou, J. Zhang, X. Zhang, Z. Yang, and M. Chen, Chem. Commun. 49, 1853 (2013).

    Article  Google Scholar 

  39. D. Li, Y. Shi, and L. Wang, Chin. J. Chem. 32, 123 (2014).

    Article  Google Scholar 

  40. S. A. Zaidi, and J. H. Shin, Talanta. 149, 30 (2016).

    Article  Google Scholar 

  41. J. T. Wu, J. Clin. Lab. Anal. 7, 293 (1993).

    Article  Google Scholar 

  42. T. D. James, and S. Shinkai, Host-Guest Chemistry: Mimetic Approaches to Study Carbohydrate Recognition (Springer-Verlag, Berlin, 2002), p. 159.

    Book  Google Scholar 

  43. B. Wang, S. Takahashi, X. Du, and J. I. Anzai, Biosensors 4, 243 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W., Li, Y. Peptide hydrogelation triggered by enzymatic induced pH switch. Sci. China Phys. Mech. Astron. 59, 678711 (2016). https://doi.org/10.1007/s11433-016-0083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0083-4

Keywords

Navigation