Skip to main content
Log in

Gravitational wave astronomy: the current status

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In the centenary year of Einstein’s General Theory of Relativity, this paper reviews the current status of gravitational wave astronomy across a spectrum which stretches from attohertz to kilohertz frequencies. Sect. 1 of this paper reviews the historical development of gravitational wave astronomy from Einstein’s first prediction to our current understanding the spectrum. It is shown that detection of signals in the audio frequency spectrum can be expected very soon, and that a north-south pair of next generation detectors would provide large scientific benefits. Sect. 2 reviews the theory of gravitational waves and the principles of detection using laser interferometry. The state of the art Advanced LIGO detectors are then described. These detectors have a high chance of detecting the first events in the near future. Sect. 3 reviews the KAGRA detector currently under development in Japan, which will be the first laser interferometer detector to use cryogenic test masses. Sect. 4 of this paper reviews gravitational wave detection in the nanohertz frequency band using the technique of pulsar timing. Sect. 5 reviews the status of gravitational wave detection in the attohertz frequency band, detectable in the polarisation of the cosmic microwave background, and discusses the prospects for detection of primordial waves from the big bang. The techniques described in sects. 1–5 have already placed significant limits on the strength of gravitational wave sources. Sects. 6 and 7 review ambitious plans for future space based gravitational wave detectors in the millihertz frequency band. Sect. 6 presents a roadmap for development of space based gravitational wave detectors by China while sect. 7 discusses a key enabling technology for space interferometry known as time delay interferometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maxwell J C. A dynamical theory of the electromagnetic field. Philos Trans R Soc, 1865

    Google Scholar 

  2. Hertz H R. Ueber sehr schnelle electrische Schwingungen. Ann der Phys, 1887, 267(7): 421–448

    Article  ADS  MATH  Google Scholar 

  3. Einstein A. Die Feldgleichungen der Gravitation. Berlin: Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1915. 844–847

    MATH  Google Scholar 

  4. Einstein A. Näherungsweise Integration der Feldgleichungen der Gravitation. Berlin: Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 1916. part 1: 688–696

    Google Scholar 

  5. Einstein A. Über Gravitationswellen. Berlin: Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften, 1918. part 1: 154–167

    Google Scholar 

  6. Rickles D, DeWitt C M. The role of gravitation in physics. Report from the 1957 Chapel Hill Conference, 1957

    Google Scholar 

  7. Hulse R A, Taylor J H. Discovery of a pulsar in a binary system. Astrophys J, 1975, 195: L51–L53

    Article  ADS  Google Scholar 

  8. Zhu X, Howell E, Blair D, et al. On the gravitational wave background from compact binary coalescences in the band of groundbased interferometers. Mon Not R Astron Soc, 2013, 431(1): 882–899

    Article  ADS  Google Scholar 

  9. Weber J. Detection and generation of gravitational waves. Phys Rev, 1960, 117: 306

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Weber J. General Relativity and Gravitational Waves. New York: Wiley-Interscience, 1961

    MATH  Google Scholar 

  11. Ju L, Blair D G, Zhao C. Detection of gravitational waves. Rep Prog Phys, 2000, 63(9): 1317

    Article  ADS  Google Scholar 

  12. Blair D. The Detection of Gravitational Waves. Cambridge: Cambridge University Press, 2005

    Google Scholar 

  13. Boughn S, Fairbank W M, McAshan M, et al. The use of cryogenic techniques to achieve high sensitivity in gravitational wave detectors. In: Proceedings of the I.A.U. Conference on Gravitational Radiation and Gravitational Collapse, Warsaw, Poland, 1973

    Google Scholar 

  14. Astone P, Babusci D, Baggio L, et al. Methods and results of the IGEC search for burst gravitational waves in the years 1997–2000. Phys Rev D, 2003, 68(2): 022001

    Article  ADS  Google Scholar 

  15. Abadie J, Abbott B P, Abbott R, et al. (The LIGO Scientific Collaboration and the Virgo Collaboration). Predictions for the rates of compact binary coalescences observable by ground-based gravitationalwave detectors. Class Quantum Grav, 2010, 27(17): 173001

    Google Scholar 

  16. Kochanek C S, Piran T. Gravitational-waves and gamma-ray bursts. Astrophy J Lett, 1993, 417: L17–L20

  17. Matteucci F, Romano D, Arcones A, et al. Europium production: Neutron star mergers versus core-collapse supernovae. Mon Not R Astron Soc, 2014, 438(3): 2177–2185

    Article  ADS  Google Scholar 

  18. Takami K, Rezzolla L, Baiotti L. Constraining the equation of state of neutron stars from binary mergers. Phys Rev Lett, 2014, 113: 091104

    Article  ADS  Google Scholar 

  19. Lee H M, Le Bigot E-O, Du Z H, et al. Gravitational wave astrophysics, data analysis and multimessenger astronomy. Sci China- Phys Mech Astron, 2015, 58(12): 120403. See section 1

    Google Scholar 

  20. Ma Y Q, Blair D G, Zhao C N, et al. Extraction of energy from gravitational waves by laser interferometer detectors. Class Quantum Grav, 2015, 32(1): 015003

    Article  ADS  Google Scholar 

  21. Blair D, Ju L, Zhao C N, et al. The next detectors for gravitational wave astronomy. Sci China-Phys Mech Astron, 2015, 58(12): 120405

    Article  Google Scholar 

  22. Chu Q, Wen L Q, Blair D. Scientific benefit of enlarging gravitational wave detector networks. J Phys-Conf Ser, 2012, 363(1): 012023

    Article  ADS  Google Scholar 

  23. Wen L Q, Chen Y B. Geometrical expression for the angular resolution of a network of gravitational-wave detectors. Phys Rev D, 2010, 81: 082001

    Article  ADS  Google Scholar 

  24. Shoemaker D. Advanced LIGO Anticipated Sensitivity Curves. Technical Report, LIGO-T0900288-v3

  25. The Virgo Collaboration. Advanced Virgo Baseline Design, 2009, note VIR–027A–09, May 16

  26. Ju L, Blair D G, Davidson J, et al. The AIGO project. I J Mod Phys D, 2011, 20(10): 2087–2092

    Article  ADS  Google Scholar 

  27. Ju L, Aoun M, Barriga P, et al. ACIGA’s high optical power test facility. Class Quantum Grav, 2004, 21(5): S887–S893

    Google Scholar 

  28. Dumas J, Barriga P, Zhao C N, et al. Compact vibration isolation and suspension for Australian International Gravitational Observatory: Local control system. Rev Sci Instrum, 2009, 80(11): 114502

    Article  ADS  Google Scholar 

  29. Barriga P, Dumas J C, Woolley A A, et al. Compact vibration isolation and suspension for Australian International Gravitational Observatory: Performance in a 72 m Fabry Perot cavity. Rev Sci Instrum, 2009, 80(11): 114501

    Article  ADS  Google Scholar 

  30. Blair D, De Laeter J, Deshon F, et al. The gravity discovery centre: A new science education centre linked to research at the frontier of physics. Teach Sci, 2006, 52(20): 30–35

    Google Scholar 

  31. Einstein A. Sitzungsberichte der Königlich. Berlin: Preußischen Akademie der Wissenschaften, 1916

    Google Scholar 

  32. Einstein A, Engel A. The Collected Papers of Albert Einstein. Princeton: Princeton University Press, 1997

    MATH  Google Scholar 

  33. Einstein A. Über Gravitationswellen. Sitzber: Preuss. Akad. Wiss, 1918

    MATH  Google Scholar 

  34. Misner CW, Thorne K S, Wheeler J A. Gravitation. New York: Freeman, 1973

    Google Scholar 

  35. Adhikari R X. Gravitational radiation detection with laser interferometry. Rev Mod Phys, 2014, 86: 1265–1291

    Article  Google Scholar 

  36. Nichols D A, Owen R, Zhang F, et al. Visualizing spacetime curvature via frame-drag vortexesand tidal tendexes I. General theory and weak-gravity applications. Phys Rev D, 2011, D84: 124014

    Google Scholar 

  37. Abramovici A, Althouse W E, Drever R W, et al. LIGO: The laser interferometer gravitational-wave observatory. Science, 1992, 256: 325–333

    Article  ADS  Google Scholar 

  38. Abbott B P, Abbott R, Adhikari R, et al. LIGO: The laser interferometer gravitational-wave observatory. Rep Prog Phys, 2009, 72: 076901

    Article  ADS  Google Scholar 

  39. Acernese F, Alshourbagy M, Amico P, et al. Virgo status. Class Quant Grav, 2008, 25: 184001

    Article  ADS  Google Scholar 

  40. Lück H, Hewitson M, Ajith P, et al. Status of the GEO600 detector. Class Quantum Grav, 2006, 23: S71–S78

  41. Arai K, Takahashi R, Tatsumi D, et al. Status of Japanese gravitational wave detectors. Class Quantum Grav, 2009, 26: 204020

    Article  ADS  Google Scholar 

  42. Quinlan F, Fortier T M, Jiang H, et al. Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains. Nature, 2013, 7: 290–293

    Google Scholar 

  43. Weiss R. Electromagnetically Coupled Broadband Gravitational Antenna. Technical Report, Massachusetts Institute of Technology. 1972

    Google Scholar 

  44. Dooley K L, Akutsu T, Dwyer S, et al. Status of advanced groundbased laser interferometersfor gravitational-wave detection. J Phys- Conf Ser, 2015, 610: 012012

    Article  ADS  Google Scholar 

  45. Harry G M. Advanced LIGO: The next generation of gravitational wavedetectors. Class Quantum Grav, 2010, 27: 084006

    Article  ADS  MathSciNet  Google Scholar 

  46. The Virgo Collaboration. Advanced virgo technical design report. 2012, VIR-0128A-12

    MATH  Google Scholar 

  47. Dooley K L. Status of GEO 600. J Phys-Conf Ser, 2015, 610: 012015

    Article  ADS  Google Scholar 

  48. Lück H, Affeldt C, Degallaix J, et al. The upgrade of GEO600. J Phys-Conf Ser, 2010, 228: 012012

    Article  ADS  Google Scholar 

  49. Grote H. the GEO 600 status. Class Quantum Grav, 2010, 27: 084003

    Article  ADS  MathSciNet  Google Scholar 

  50. Affeldt C, Danzmann K, Dooley K L, et al. Advanced techniques in GEO 600. Class Quantum Grav, 2014, 31: 224002

    Article  ADS  Google Scholar 

  51. Somiya K. Detector configuration of KAGRA: The Japanese cryogenicgravitational-wave detector. Class Quantum Grav, 2012, 29: 124007

    Article  ADS  Google Scholar 

  52. Pitkin M, Reid S, Rowan S, et al. Gravitational wave detection by interferometry (Ground and Space). Liv Rev Rel, 2011, 14: 5

    MATH  Google Scholar 

  53. Cella G, Giazotto A. Invited review article: Interferometric gravity wavedetectors. Rev Sci Instrum, 2011, 82: 101101

    Article  ADS  Google Scholar 

  54. Freise A, Strain K. Interferometer techniques for gravitational-wave detection. Liv Rev Rel, 2010, 13: 1

    MATH  Google Scholar 

  55. Braginsky V B. Detection of gravitational waves from astrophysical sources. Astron Lett, 2008, 34(8): 558–562

    Article  ADS  Google Scholar 

  56. Aufmuth P, Danzmann K. Gravitational wave detectors. New J Phys, 2005, 7: 202

    Article  Google Scholar 

  57. Barish B C, Weiss R. LIGO and the detection of gravitational waves. Phys Tod, 1999, 52(10): 44–50

    Article  Google Scholar 

  58. Saulson P. Fundamentals of Interferometric Gravitational Wave Detectors. Singapore: World Scientific Publishing Company, 1994

    Book  Google Scholar 

  59. Weiss R. Gravitational radiation. Rev Mod Phys, 1999, 71: S187–S196

    Article  ADS  Google Scholar 

  60. Giazotto A. Interferometric detection of gravitational waves. Phys Rep, 1989, 182: 365–424

    Article  ADS  Google Scholar 

  61. Vinet J Y, Man C N, Brillet A, et al. Optimization of long baseline optical interferometers. Phys Rev D, 1988, 38: 433–447

    Article  ADS  Google Scholar 

  62. Christensen N. Measuring the stochastic gravitational radiation background with laser interferometric antennas. Phys Rev D, 1992, 46: 5250–5266

    Article  ADS  Google Scholar 

  63. Belczynski K, Kalogera V, Bulik T. A comprehensive study of binary compact objects asgravitational wave sources: Evolutionary channels, rates, and physical properties. Astrophys J, 2001, 572: 407–431

    Article  ADS  Google Scholar 

  64. Belczynski K, Kalogera V, Rasio F A, et al. On the rarity of double black hole binaries: Consequences for gravitational-wave detection. Astrophys J, 2007, 662: 504–512

    Article  ADS  Google Scholar 

  65. Phinney E S. The rate of neutron star binary mergers in the universe: Minimal predictions for gravity wave detector. Astrophys J, 1991, 380: L17–L21

    Article  ADS  Google Scholar 

  66. Hawking S, Israel W. Three Hundred Years of Gravitation, Philosophiae Naturalis, Principia Mathematica. Cambridge: Cambridge University Press, 1989

    Google Scholar 

  67. Cutler C, Thorne K S. Proceedings of the GR16 Conference on General Relativity and Gravitation. Singapore: World Scientific, 2002

    Google Scholar 

  68. Sathyaprakash B S, Schutz B F. Physics, astrophysics and cosmology with gravitational waves. Liv Rev Rel, 2009, 12: 2

    MATH  Google Scholar 

  69. Hensley J M, Peters A, Chu S. Active low frequency vertical vibration isolation. Rev Sci Instrum, 1999, 70(6): 2735

    Article  ADS  Google Scholar 

  70. Newell D B, Richman S J, Nelson P G, et al. An ultra-low-noise, low-frequency, six degrees of freedom active vibration isolator. Rev Sci Instrum, 1997, 68(8): 3211

    Article  ADS  Google Scholar 

  71. Matichard F, Lantz B, Mason K, et al. Advanced LIGO two-stage twelve-axis vibration isolationand positioning platform. Part 1: Design and production overview. Prec Eng, 2015, 40: 273–286

    Article  Google Scholar 

  72. Matichard F, Lantz B, Mason K, et al. Advanced LIGO two-stage twelve-axis vibration isolationand positioning platform. Part 2: Experimental investigation and tests results. Prec Eng, 2015, 40: 287–297

    Article  Google Scholar 

  73. Aston S M. Update on quadruple suspension design for Advanced LIGO. Class Quantum Grav, 2012, 29: 235004

    Article  ADS  Google Scholar 

  74. Giaime J, Saha P, Shoemaker D, et al. A passive vibration isolation stack for LIGO: design, modeling, and testing. Rev Sci Instrum, 1996, 67(1): 208

    Article  ADS  Google Scholar 

  75. Ponslet E R, Miller W O. Coil springs with constrained layer viscoelastic damping for passive isolation. Soc Photo-Opt Instrum Eng (SPIE) Confer Ser, 1998, 3327: 432–443

    ADS  Google Scholar 

  76. Accadia T. The seismic Superattenuators of the Virgo gravitational waves interferometer. J Low Freq Noise Vib Act Control, 2011, 30(1): 63

    Article  Google Scholar 

  77. Acernese F. Measurements of superattenuator seismic isolation by Virgo interferometer. Astropart Phys, 2012, 33(3): 182–189

    Article  ADS  Google Scholar 

  78. Ballardin G. Measurement of the VIRGO superattenuator performance for seismic noise suppression. Rev Sci Instrum, 2001, 72(9): 3643

    Article  ADS  Google Scholar 

  79. Marka S, Takamori A, Ando M, et al. Anatomy of the TAMA SAS seismic attenuation system. Class Quantum Grav, 2002, 19: 1605–1614

    Article  ADS  Google Scholar 

  80. Grote H. Making it Work: Second Generation Interferometry in GEO 600. Hannover: Universitat Hannover, 2003

    Google Scholar 

  81. Plissi M V, Strain K A, Torrie C I, et al. Aspects of the suspension system for GEO 600. Rev Sci Instrum, 1998, 69(8): 3055

    Article  ADS  Google Scholar 

  82. Abbott R, Adhikari R, Allen G, et al. Seismic isolation for Advanced LIGO. Class Quantum Grav, 2002, 19: 1591–1597

    Article  ADS  Google Scholar 

  83. Braginsky V B, Vyatchanin S P. Thermodynamical fluctuations in optical mirror coatings. Phys Lett A, 2003, 312: 244–255

    Article  ADS  Google Scholar 

  84. Evans M, Ballmer S, Fejer M, et al. Thermo-optic noise in coated mirrors for high-precisionoptical measurements. Phys Rev D, 2008, 78: 102003

    Article  ADS  Google Scholar 

  85. Harry G, Bodiya T, DeSalvo R. Optical Coatings and Thermal Noise in Precision Measurement. Cambridge: Cambridge University Press, 2012

    Google Scholar 

  86. Bassiri R, Evans K, Borisenko K, et al. Correlations between the mechanical loss and atomic structure of amorphous TiO2-doped Ta2O5 coatings. Acta Mater, 2013, 61(4): 1070–1077

    Article  Google Scholar 

  87. Evans K, Bassiri R, Maclaren I, et al. Reduced density function analysis of titanium dioxide doped tantalum pentoxide. J Phys-Conf Ser, 2012, 371: 012058

    Article  ADS  Google Scholar 

  88. Hong T, Yang H, Gustafson E K, et al. Brownian thermal noise in multilayer coated mirrors. Phys Rev, 2013, D87: 082001

    ADS  Google Scholar 

  89. Flaminio R, Franc J, Michel C, et al. A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wavedetectors. Class Quantum Grav, 2010, 27: 084030

    Article  ADS  MathSciNet  Google Scholar 

  90. Kondratiev N M, Gurkovsky A G, Gorodetsky M L. Thermal noise and coating optimization in multilayerdielectric mirrors. Phys Rev, 2011, D84: 022001

    ADS  Google Scholar 

  91. Harry GM, Abernathy MR, Becerra-Toledo A E, et al. Titania-doped tantala/silica coatings for gravitational-wave detection. Class Quantum Grav, 2007, 24: 405–416

    Article  ADS  Google Scholar 

  92. Harry G M, Armandula H, Black E, et al. Thermal noise from optical coatings in gravitational wave detectors. Appl Opt, 2006, 45(7): 1569

    Article  ADS  Google Scholar 

  93. Harry G M, Gretarsson A M, Saulson P R, et al. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class Quantum Grav, 2002, 19: 897–918

    Article  ADS  MATH  Google Scholar 

  94. Rowan S, Hough J, Crooks D R M. Thermal noise and material issues for gravitational wave detectors. Phys Lett A, 2005, 347: 25–32

    Article  ADS  Google Scholar 

  95. Penn S D, Sneddon P H, Armandula H, et al. Mechanical loss in tantala/ silica dielectric mirror coatings. Class Quantum Grav, 2003, 20: 2917–2928

    Article  ADS  MATH  Google Scholar 

  96. Driggers J C, Harms J, Adhikari R X. Subtraction of Newtonian noise using optimized sensor arrays. Phys Rev D, 2012, 86: 102001

    Article  ADS  Google Scholar 

  97. Harms J, Hild S. Passive Newtonian noise suppression for gravitational-wave observatories based on shaping of the local topography. Class Quantum Grav, 2014, 31: 185011

    Article  ADS  MATH  Google Scholar 

  98. Caves C M. Quantum mechanical noise in an interferometer. Phys Rev D, 1981, 23: 1693–1708

    Article  ADS  Google Scholar 

  99. Caves C M, Schumaker B L. New formalism for two-photon quantum optics. 1. Quadrature phases and squeezed states. Phys Rev A, 1985, 31: 3068–3092

    Article  ADS  MathSciNet  Google Scholar 

  100. Schumaker B L, Caves CM. New formalism for two-photon quantum optics. 2. Mathematical foundation and compact notation. Phys Rev A, 1985, 31: 3093–3111

    Article  ADS  MathSciNet  Google Scholar 

  101. Loudon R. Quantum limit on the Michelson interferometer used for gravitational wave detection. Phys Rev Lett, 1981, 47: 815–818

    Article  ADS  Google Scholar 

  102. Braginsky V B, Khalili F Y. Quantum Measurement. Cambridge: Cambridge University Press, 1999

    MATH  Google Scholar 

  103. Hello P, Vinet J. Numerical model of transient thermal effects in high power optical resonators. J Phys (France), 1990, 51: 1267

    Article  Google Scholar 

  104. Winkler W, Danzmann K, Rüdiger A, et al. Heating by optical absorption and the performance of interferometric gravitational wave detectors. Phys Rev A, 1991, 44: 7022–7036

    Article  ADS  Google Scholar 

  105. Lawrence R, Ottaway D, Zucker M, et al. Active correction of thermal lensing through external radiative thermal actuation. Opt Lett, 2004, 29: 2635

    Article  ADS  Google Scholar 

  106. Meers B J. Recycling in laser interferometric gravitational wave detectors. Phys Rev D, 1988, 38: 2317–2326

    Article  ADS  Google Scholar 

  107. Mizuno J. Comparison of Optical Configurations for Laserinterferometric Gravitational-wave Detectors. Garching: Universitat Hannover and Max-Planck-Institut fur Quantenoptik, 1995

    Google Scholar 

  108. Mizuno J. Resonant sideband extraction: A new configuration for interferometric gravitational wave detectors. Phys Lett A, 1993, 175: 273–276

    Article  ADS  Google Scholar 

  109. Strain K A, Muller G, Delker T, et al. Sensing and control in dualrecycling laser interferometer gravitational-wave detectors. Appl Opt, 2003, 42: 1244

    Article  ADS  Google Scholar 

  110. Aasi J, Abadie J, Abbott B P, et al. (VIRGO, LIGO Scientific Collaboration). Prospects for localization of gravitational wave transients by the advanced LIGO and advanced Virgo observatories. arXiv:1304.0670

  111. Accadia T, Acernese F, Alshourbagy M, et al. Virgo: A laser interferometer to detect gravitational waves. J Instrum, 2012, 7: P03012

    Article  Google Scholar 

  112. Acernese F, Agathos M, Agatsuma K, et al. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class Quantum Grav, 2015, 32: 024001

    Article  ADS  Google Scholar 

  113. Callen H B, Greene R F. On a theorem of irreversible thermodynamics. Phys Rev, 1952, 86: 702; Callen H B, Welton T A. Irreversibility and generalized noise. Phys Rev, 1951, 83: 34

    Article  ADS  MathSciNet  MATH  Google Scholar 

  114. Saulson P R. Thermal noise in mechanical experiments. Phys Rev D, 1990, 42(8): 2437–2445

    Article  ADS  Google Scholar 

  115. Gretarsson A M, Harry G M, Penn S D, et al. Effect of optical coating and surface treatments on mechanical loss in fused silica. In: 3rd Edoardo Amaldi Conference on Gravitational Waves, AIP Conference proceedings, 2000. 523: 306

    ADS  Google Scholar 

  116. Levin Y. Internal thermal noise in the LIGO test masses: A direct approach. Phys Rev D, 57(2): 659–663

  117. Penn S D, Ageev A, Busby D, et al. Frequency and surface dependence of the mechanical loss in fused silica. Phys Lett A, 2006, 352(1-2): 3–6

    Article  ADS  Google Scholar 

  118. Braginsky V B, Gorodetsky M L, Vyatchanin S P. Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae. Phys Lett A, 1999, 264(1): 1–10

    Article  ADS  Google Scholar 

  119. Braginsky V B, Vyatchanin S P. Corner reflectors and quantum-nondemolition measurements in gravitational wave antennae. Phys Lett A, 2004, 324: 345–360

    Article  ADS  Google Scholar 

  120. Abernathy M, Acernese F, Ajith P, et al. Einstein gravitational wave telescope conceptual design study. ET-106C-10, https://tds.egogw. it/itf/tds/file.php?callFile=ET-0106C-10.pdf; Punturo M, Abernathy M, Acernese F, et al. The Einstein Telescope: A thirdgeneration gravitational wave observatory. Class Quantum Grav, 2010, 27: 194002

  121. Vacher R, Courtens E, Foret M. An harmonic versus relaxational sound damping in glasses. II. Vitreous silica. Phys Rev B, 2005, 72: 214205

    Article  ADS  Google Scholar 

  122. Martin I W, Chalkley E, Nawrodt R, et al. Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2. Class Quantum Grav, 2009, 26: 155012

    Article  ADS  Google Scholar 

  123. Hirose E, Craig K, Ishitsuka H, et al. Mechanical loss of a multilayer tantala/silica coating on a sapphire disk at cryogenic temperatures: Toward the KAGRA gravitational wave detector. Phys Rev D, 2014, 90: 102004

    Article  ADS  Google Scholar 

  124. Nawrodt R, Zimmer A, Koettig T, et al. High mechanical Q-factor measurements on silicon bulk samples. J Phy-Conf Ser, 2008, 122(1): 012008

    Article  ADS  Google Scholar 

  125. Degallaix J, Komma J, Forest D, et al. Measurement of the optical absorption of bulk silicon at cryogenic temperature and the implication for the Einstein Telescope. Class Quantum Grav, 2014, 31(18): 185010

    Article  ADS  MATH  Google Scholar 

  126. Hirose E, Bajuk D, Billingsley G, et al. Sapphire mirror for the KAGRA gravitational wave detector. Phys Rev D, 2014, 89(6): 062003

    Article  ADS  Google Scholar 

  127. Uchiyama T, Furuta K, Ohashi M, et al. Excavation of an underground site for a km-scale laser interferometric gravitational-wave detector. Class Quantum Grav, 2014, 31(22): 224005

    Article  ADS  Google Scholar 

  128. Aso Y, Michimura Y, Somiya K, et al. Interferometer design of the KAGRA gravitational wave detector. Phys Rev D, 2013, 88(4): 043007

    Article  ADS  Google Scholar 

  129. Sakakibara Y, Akutsu T, Chen D, et al. Progress on the cryogenic system for the KAGRA cryogenic interferometric gravitational wave telescope. Class Quantum Grav, 2014, 31(22): 224003

    Article  ADS  Google Scholar 

  130. Sakakibara Y, Kimura N, Akutsu T, et al. Performance test of pipeshaped radiation shields for cryogenic interferometric gravitational wave detectors. Class Quantum Grav, 2015, 32(15): 155011

    Article  ADS  Google Scholar 

  131. Chen D. Study of a Cryogenic Suspension System for the Gravitational Wave Telescope KAGRA. Dissertation for the Doctoral Degree. Tokyo: The University of Tokyo, 2015

    Google Scholar 

  132. Khalaidovski A, Hofmann G, Chen D, et al. Evaluation of heat extraction through sapphire fibers for the GW observatory KAGRA. Class Quantum Grav, 2014, 31(10): 105004

    Article  ADS  MATH  Google Scholar 

  133. Kumar R, Chen D, Hagiwara A, et al. Status of the cryogenic payload system for the KAGRA detector. In: Proceedings of the 11th Amaldi conference on Gravitational Waves, 2015. In press

    Google Scholar 

  134. Chen D, Naticchioni L, Khalaidovski A, et al. Vibration measurement in the KAGRA cryostat. Class Quantum Grav, 2014, 31(22): 224001

    Article  ADS  Google Scholar 

  135. Hild S, Chelkowski S, Freise A, et al. A xylophone configuration for a third-generation gravitational wave detector. Class Quantum Grav, 2010, 27(1): 015003

    Article  ADS  MATH  Google Scholar 

  136. Cole G D, Zhang W, Martin M, et al. Tenfold reduction of Brownian noise in high-reflectivity optical coatings. Nat Photonics, 2013, 7(8): 644–650

    Article  ADS  Google Scholar 

  137. Taylor J H, Taylor J M. Gravitational radiation and thebinary pulsar PSR 1913+16. Astrophys J, 1982, 253: 908–920

    Article  ADS  Google Scholar 

  138. Weisberg J M, Nice D J, Taylor J H. Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys J, 2010, 722: 1030–1034

    Article  ADS  Google Scholar 

  139. Sazhin M V. Opportunities for detecting ultralong gravitational waves. Soviet Astron, 1978, 22: 36–38

    ADS  Google Scholar 

  140. Detweiler S. Pulsar timing measurements and the search for gravitational waves. Astrophys J, 1979, 234: 1100–1104

    Article  ADS  Google Scholar 

  141. Estabrook F B, Wahlquist H D. Response of Doppler spacecraft tracking to gravitational radiation. Gen Relat Grav, 1975, 6: 439–447

    Article  ADS  Google Scholar 

  142. Hellings RW, Downs G S. Upper limits on the isotropic gravitational radiation backgroundfrom pulsar timing analysis. Astrophys J, 1983, 265: L39–L42

    Article  ADS  Google Scholar 

  143. Romani RW, Taylor J H. An upper limit on the stochastic background of ultralow-frequencygravitational waves. Astrophys J, 1983, 265: L35–L37

    Article  ADS  Google Scholar 

  144. Bertotti B, Carr B J, Rees M J. Limits from the timing of pulsars on the cosmic gravitational wavebackground. Mon Not R Astron Soc, 1983, 203: 945–954

    Article  ADS  Google Scholar 

  145. Backer D C, Kulkarni S R, Heiles C, et al. A millisecond pulsar. Nature, 1982, 300: 615–618

    Article  ADS  Google Scholar 

  146. Davis M M, Taylor J H, Weisberg J M, et al. High-precision timing observations of the millisecond pulsar PSR1937 + 21. Nature, 1985, 315: 547–550

    Article  ADS  Google Scholar 

  147. Rawley L A, Taylor J H, Davis M M, et al. Millisecond pulsar PSR 1937+21—A highly stable clock. Science, 1987, 238: 761–765

    Article  ADS  Google Scholar 

  148. Stinebring D R, Ryba M F, Taylor J H, etal. Cosmic gravitationalwave background—Limits from millisecond pulsar timing. Phys Rev Lett, 1990, 65: 285–288

    Article  ADS  Google Scholar 

  149. Kaspi V M, Taylor J H, Ryba M F. High-precision timing of millisecond pulsars. 3: Long-termmonitoring of PSRs B1855+09 and B1937+21. Astrophys J, 1994, 428: 713–728

    Article  ADS  Google Scholar 

  150. Romani R W. Timing a millisecond pulsar array. Adv Sci Inst (ASI) Ser C, 1989, 262: 113

    Google Scholar 

  151. Foster R S, Backer D C. Constructing a pulsar timing array. Astrophys J, 1990, 361: 300–308

    Article  ADS  Google Scholar 

  152. Manchester R N, Hobbs G, Bailes M, et al. The Parkes pulsar timing array project. Pub Astron Soc Aust, 2013, 30: 17

    Article  ADS  Google Scholar 

  153. Hobbs G. The Parkes pulsar timing array. Class Quantum Grav, 2013, 30(22): 224007

    Article  ADS  Google Scholar 

  154. Kramer M, Champion D J. The European pulsar timing array and the large European array for pulsars. Class Quantum Grav, 2013, 30(22): 224009

    Article  ADS  Google Scholar 

  155. McLaughlin M A. The North American nanohertz observatory for gravitational waves. Class Quantum Grav, 2013, 30(22): 224008

    Article  ADS  Google Scholar 

  156. Hobbs G, Archibald A, Arzoumanian Z, et al. The international pulsar timing array project: Using pulsars as a gravitational wave detector. Class Quantum Grav, 2010, 27(8): 084013

    Article  ADS  Google Scholar 

  157. Manchester R N. The international pulsar timing array. Class Quantum Grav, 2013, 30(22): 224010

    Article  ADS  Google Scholar 

  158. McLaughlin M A. The international pulsar timing array: A galactic scale gravitational wave observatory. arXiv:1409.4579v2

  159. Wang N. Xinjiang Qitai 110 m radio telescope (in Chinese). Sci Sin- Phys Mech Astron, 2014, 44: 783–794

    Article  Google Scholar 

  160. Nan R, Li D, Jin C, et al. The Five-hundred Aperture Spherical Radio Telescope (fast) project. Int J Mod Phys D, 2011, 20: 989–1024

    Article  ADS  Google Scholar 

  161. Hobbs G, Dai S, Manchester R N, et al. The role of FAST in pulsar timing arrays. arXiv:1407.0435v1

  162. Lazio T J W. The square kilometre array pulsar timing array. Class Quantum Grav, 2013, 30(22): 224011

    Article  ADS  Google Scholar 

  163. Ferdman R D, van Haasteren R, Bassa C G, et al. The European pulsar timing array: Current efforts and a LEAP towardthe future. Class Quantum Grav, 2010, 27(8): 084014

    Article  ADS  Google Scholar 

  164. Manchester R N, Hobbs G B, Teoh A, et al. The Australia telescope national facility pulsar catalogue. Astron J, 2005, 129: 1993–2006

    Article  ADS  Google Scholar 

  165. Wolszczan A, Frail D A. A planetary system around the millisecond pulsar PSR1257 + 12. Nature, 1992, 355: 145–147

    Article  ADS  Google Scholar 

  166. Burgay M, D’Amico N, Possenti A, et al. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature, 2003, 426: 531–533

    Article  ADS  Google Scholar 

  167. Lyne A G, Burgay M, Kramer M, et al. A double-pulsar system: A rare laboratory for relativistic gravityand plasma physics. Science, 2004, 303: 1153–1157

    Article  ADS  Google Scholar 

  168. Kramer M, Stairs I H, Manchester R N, et al. Tests of general relativity from timing the double pulsar. Science, 2006, 314: 97–102

    Article  ADS  Google Scholar 

  169. Hewish A, Bell S J, Pilkington J D H, et al. Observation of a rapidly pulsating radio source. Nature, 1968, 217: 709–713

    Article  ADS  Google Scholar 

  170. Lorimer D R, Kramer M. Handbook of Pulsar Astronomy. Cambridge: Cambridge University Press, 2005

    Google Scholar 

  171. Manchester R N, Taylor J H. Pulsars. San Francisco: WH Freeman and Company, 1977

    Google Scholar 

  172. Edwards R T, Hobbs G B, Manchester R N. TEMPO2, a new pulsar timing package—II. The timing model andprecision estimates. Mon Not R Astron Soc, 2006, 372: 1549–1574

    Article  ADS  Google Scholar 

  173. Lommen A N, Demorest P. Pulsar timing techniques. Class Quantum Grav, 2013, 30(22): 224001

    Article  ADS  Google Scholar 

  174. Hobbs G B, Edwards R T, Manchester R N. TEMPO2, a new pulsartiming package—I. An overview. Mon Not R Astron Soc, 2006, 369: 655–672

    Article  ADS  Google Scholar 

  175. Hobbs G B, Jenet F, Lee K J, et al. TEMPO2: A new pulsar timing package—III. Gravitational wavesimulation. Mon Not R Astron Soc, 2009, 394: 1945–1955

    Article  ADS  Google Scholar 

  176. Lentati L, Alexander P, Hobson M P. TEMPONEST: A Bayesian approach to pulsar timing analysis. Mon Not R Astron Soc, 2014, 437: 3004–3023

    Article  ADS  Google Scholar 

  177. Vigeland S J, Vallisneri M. Bayesian inference for pulsar-timing models. Mon Not R Astron Soc, 2014, 440: 1446–1457

    Article  ADS  Google Scholar 

  178. Shannon R M, Oslowski S, Dai S, et al. Limitations in timing precision due to single-pulse shape variability in millisecond pulsars. Mon Not R Astron Soc, 2014, 443: 1463–1481

    Article  ADS  Google Scholar 

  179. Dolch T, LamMT, Cordes J, et al. A 24 Hr global campaign to assess precision timing of the millisecond pulsar J1713+0747. Astrophys J, 2014, 794: 21

    Article  ADS  Google Scholar 

  180. Oslowski S, van Straten W, Hobbs G B, et al. High signal-to-noise ratio observations and the ultimate limits ofprecision pulsar timing. Mon Not R Astron Soc, 2011, 418: 1258–1271

    Article  ADS  Google Scholar 

  181. Oslowski S, van Straten W, Demorest P, et al. Improving the precision of pulsar timing through polarization statistics. Mon Not R Astron Soc, 2013, 430: 416–424

    Article  ADS  Google Scholar 

  182. Blandford R, Romani R W, Narayan R. Arrival-time analysis for a millisecond pulsar. J Astrophys Astron, 1984, 5: 369–388

    Article  ADS  Google Scholar 

  183. Hobbs G B, Lyne A, Kramer M. Pulsar timing noise. Chin J Astron Astrophys Suppl, 2006, 6(2): 169–175

    Article  Google Scholar 

  184. Lyne A, Kramer M. An analysis of the timing irregularities for 366 pulsars. Mon Not R Astron Soc, 2010, 402: 1027–1048

    Article  ADS  Google Scholar 

  185. Shannon RM, Cordes J M. Assessing the role of spin noise in the precision timing of millisecond pulsars. Astrophys J, 2010, 725: 1607–1619

    Article  ADS  Google Scholar 

  186. Coles W, Hobbs G B, Champion D J, et al. Pulsar timing analysis in the presence of correlated noise. Mon Not R Astron Soc, 2011, 418: 561–570

    Article  ADS  Google Scholar 

  187. van Haasteren R, Levin Y. Understanding and analysing timecorrelated stochastic signals inpulsar timing. Mon Not R Astron Soc, 2013, 428: 1147–1159

    Article  ADS  Google Scholar 

  188. Demorest P B, Ferdman R D, Gonzalez M E, et al. Limits on the stochastic gravitational wave background from the North American nanohertz observatory for gravitational waves. Astrophys J, 2013, 762: 94

    Article  ADS  Google Scholar 

  189. Keith MJ, Coles W, Shannon RM. et al. Measurement and correction of variations in interstellar dispersionin high-precision pulsar timing. Mon Not R Astron Soc, 2013, 429: 2161–2174

    Google Scholar 

  190. Lee K J, Bassa C G, Janssen G H, etal. Model-based asymptotically optimal dispersion measure correction forpulsar timing. Mon Not R Astron Soc, 2014, 441: 2831–2844

    Article  ADS  Google Scholar 

  191. You X P, Hobbs G B, Coles W, et al. Dispersion measure variations and their effect on precision pulsartiming. Mon Not R Astron Soc, 2007, 378: 493–506

    Article  ADS  Google Scholar 

  192. Narayan R. The physics of pulsar scintillation. Roy Soc London Philos Trans Ser A, 1992, 341: 151–165

    Article  ADS  Google Scholar 

  193. Stinebring D. Effects of the interstellar medium on detection of lowfrequencygravitational waves. Class Quantum Grav, 2013, 30(22): 224006

    Article  ADS  Google Scholar 

  194. Cordes J M, Shannon R M. A measurement model for precision pulsar timing. arXiv:1010.3785v1

  195. Demorest P B. Cyclic spectral analysis of radio pulsars. Mon Not R Astron Soc, 2011, 416: 2821–2826

    Article  ADS  Google Scholar 

  196. Liu K, Desvignes G, Cognard I, et al. Measuring pulse times of arrival from broad-band pulsar observations. Mon Not R Astron Soc, 2014, 443: 3752–3760

    Article  ADS  Google Scholar 

  197. Cordes J M, Shannon R M, Stinebring D R. Frequencydependent dispersion measures and implications for pulsar timing. arXiv:1503.08491v1

  198. Hobbs G B, ColesW, Manchester R N, et al. Development of a pulsarbased time-scale. Mon Not R Astron Soc, 2012, 427: 2780–2787

    Article  ADS  Google Scholar 

  199. Champion D J, Hobbs G B, Manchester R N, et al. Measuring the mass of solar system planets using pulsar timing. Astrophys J, 2010, 720: L201–L205

    Article  ADS  Google Scholar 

  200. Jenet F A, Lommen A, Larson S L, et al. Constraining the properties of supermassive black hole systems using pulsar timing: Application to 3C 66B. Astrophys J, 606: 799–803

  201. Yi S, Stappers BW, Sanidas S A, et al. Limits on the strength of individual gravitational wave sourcesusing high-cadence observations of PSR B1937+21. Mon Not R Astron Soc, 2014, 445: 1245–1252

    Article  ADS  Google Scholar 

  202. Deng X, Finn L S. Pulsar timing array observations of gravitational wave source timingparallax. Mon Not R Astron Soc, 2011, 414: 50–58

    Article  ADS  Google Scholar 

  203. Wahlquist H. The Doppler response to gravitational waves from a binary starsource. Gen Relat Grav, 1987, 19: 1101–1113

    Article  ADS  Google Scholar 

  204. Sanidas S A, Battye R A, Stappers B W. Constraints on cosmic string tension imposed by the limit on thestochastic gravitational wave background from the European pulsar timing array. Phys Rev D, 2012, 85(12): 122003

    Article  ADS  Google Scholar 

  205. Zhao W, Zhang Y, You X P, et al. Constraints of relic gravitational waves by pulsar timing arrays: Forecasts for the FAST and SKA projects. Phys Rev D, 2013, 87(12): 124012

    Article  ADS  Google Scholar 

  206. Tong M L, Zhang Y, Zhao W, et al. Using pulsar timing arrays and the quantum normalization conditionto constrain relic gravitational waves. Class Quantum Grav, 2014, 31(3): 035001

    Article  ADS  MATH  Google Scholar 

  207. Rajagopal M, Romani R W. Ultra-low-frequency gravitational radiation from massive black hole binaries. Astrophys J, 1995, 446: 543–549

    Article  ADS  Google Scholar 

  208. Jaffe A H, Backer D C. Gravitational waves probe the coalescence rate of massive black hole binaries. Astrophys J, 2003, 583: 616–631

    Article  ADS  Google Scholar 

  209. Wyithe J S B, Loeb A. Low-frequency gravitational waves from massive black hole binaries: Predictions for LISA and pulsar timing arrays. Astrophys J, 2003, 590: 691–706

    Article  ADS  Google Scholar 

  210. Wen Z L, Liu F S, Han J L. Mergers of luminous early-type galaxies in the local universe and gravitational wave background. Astrophys J, 2009, 692: 511–521

    Article  ADS  Google Scholar 

  211. Sesana A. Systematic investigation of the expected gravitational wave signalfrom supermassive black hole binaries in the pulsar timing band. Mon Not R Astron Soc, 2013, 433: L1–L5

    Article  ADS  Google Scholar 

  212. Ravi V, Wyithe J S B, Hobbs G B, et al. Does a “stochastic” background of gravitational waves exist in the pulsar timing band? Astrophys J, 2012, 761: 84

    Article  ADS  Google Scholar 

  213. McWilliams S T, Ostriker J P, Pretorius F. Gravitational waves and stalled satellites from massive galaxy mergers at z - 1. Astrophys J, 2014, 789: 156

    Article  ADS  Google Scholar 

  214. Enoki M, Nagashima M. The effect of orbital eccentricity on gravitational wave background radiation from supermassive black hole binaries. Prog Theor Phys, 2007, 117: 241–256

    Article  ADS  MathSciNet  MATH  Google Scholar 

  215. Sesana A. Insights into the astrophysics of supermassive black hole binariesfrom pulsar timing observations. Class Quantum Grav, 2013, 30(22): 224014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  216. Ravi V, Wyithe J S B, Shannon R M, et al. Binary supermassive black hole environments diminish the gravitational wave signal in the pulsar timing band. Mon Not R Astron Soc, 2014, 442: 56–68

    Article  ADS  Google Scholar 

  217. Jenet F A, Hobbs G B, Lee K J, et al. Detecting the stochastic gravitational wave background using pulsar timing. Astrophys J, 2005, 625: L123–L126

    Article  ADS  Google Scholar 

  218. Jenet F A, Hobbs G B, van Straten W, et al. Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: Current limits and future prospects. Astrophys J, 2006, 653: 1571–1576

    Article  ADS  Google Scholar 

  219. Yardley D R B, Coles W A, Hobbs G B, et al. On detection of the stochastic gravitational-wave background usingthe Parkes pulsar timing array. Mon Not R Astron Soc, 2011, 414: 1777–1787

    Article  ADS  Google Scholar 

  220. van Haasteren R, Levin Y, Janssen G H, et al. Placing limits on the stochastic gravitational-wave background using European pulsar timing array data. Mon Not R Astron Soc, 2011, 414: 3117–3128

    Article  ADS  Google Scholar 

  221. Lentati L, Taylor S R, Mingarelli CMF, et al. European pulsar timing array limits on an isotropic stochasticgravitational-wave background. Mon Not R Astron Soc, 2015, 453: 2576–2598

    Article  ADS  Google Scholar 

  222. Shannon R M, Ravi V, Coles W A, et al. Gravitational-wave limits from pulsar timing constrain supermassive black hole evolution. Science, 2013, 342: 334–337

    Article  ADS  Google Scholar 

  223. Springel V, White S D M, Jenkins A, et al. Simulations of the formation, evolution and clustering of galaxiesand quasars. Nature, 2005, 435: 629–636

    Article  ADS  Google Scholar 

  224. Boylan-Kolchin M, Springel V, White S D M, et al. Resolving cosmic structure formation with the Millennium—II Simulation. Mon Not R Astron Soc, 2009, 398: 1150–1164

    Article  ADS  Google Scholar 

  225. Kulier A, Ostriker J P, NatarAstron Jan P, et al. Understanding black hole mass assembly via accretion and mergers at late times in cosmological simulations. Astrophys J, 2015, 799: 178

    Article  ADS  Google Scholar 

  226. Cornish N J, Sesana A. Pulsar timing array analysis for black hole backgrounds. Class Quantum Grav, 2013, 30(22): 224005

    Article  ADS  MATH  Google Scholar 

  227. Mingarelli C M F, Sidery T, Mandel I, et al. Characterizing gravitational wave stochastic background anisotropywith pulsar timing arrays. Phys Rev D, 2013, 88(6): 062005

    Article  ADS  Google Scholar 

  228. Taylor S R, Gair J R. Searching for anisotropic gravitational-wave backgrounds usingpulsar timing arrays. Phys Rev D, 2013, 88(8): 084001

    Article  ADS  Google Scholar 

  229. Gair J, Romano J D, Taylor S, et al. Mapping gravitational-wave backgrounds using methods from CMB analysis: Application to pulsar timing arrays. Phys Rev D, 2014, 90(8): 082001

    Article  ADS  Google Scholar 

  230. Taylor S R, Mingarelli C M F, Gair J R, et al. Limits on anisotropy in the nanohertz stochastic gravitational wave background. Phys Rev Lett, 2015, 15(4): 041101

    Article  ADS  Google Scholar 

  231. Thorne K S. Three Hundred Years of Gravitation. Cambridge: Cambridge University Press, 1987

    MATH  Google Scholar 

  232. Sudou H, Iguchi S, Murata Y, et al. Orbital motion in the radio galaxy 3C 66B: Evidence for a supermassive black hole binary. Science, 2003, 300: 1263–1265

    Article  ADS  Google Scholar 

  233. Sesana A, Vecchio A, Volonteri M. Gravitational waves from resolvable massive black hole binarysystems and observations with pulsar timing arrays. Mon Not R Astron Soc, 2009, 394: 2255–2265

    Article  ADS  Google Scholar 

  234. Lee K J, Wex N, Kramer M, et al. Gravitational wave astronomy of single sources with a pulsar timing array. Mon Not R Astron Soc, 2011, 414: 3251–3264

    Article  ADS  Google Scholar 

  235. Mingarelli C M F, Grover K, Sidery T, et al. Observing the dynamics of supermassive black hole binaries with pulsar timing arrays. Phys Rev Lett, 2012, 109(8): 081104

    Article  ADS  Google Scholar 

  236. Ravi V, Wyithe J S B, Shannon RM, et al. Prospects for gravitationalwave detection and supermassive blackhole astrophysics with pulsar timing arrays. Mon Not R Astron Soc, 2015, 447: 2772–2783

    Article  ADS  Google Scholar 

  237. Rosado P A, Sesana A, Gair J. Expected properties of the first gravitational wave signal detectedwith pulsar timing arrays. Mon Not R Astron Soc, 2015, 451: 2417–2433

    Article  ADS  Google Scholar 

  238. Babak S, Sesana A. Resolving multiple supermassive black hole binaries with pulsartiming arrays. Phys Rev D, 2012, 85: 044034

    Article  ADS  Google Scholar 

  239. Ellis J A, Siemens X, Creighton D E. Optimal strategies for continuous gravitational wave detection in pulsar timing arrays. Astrophys J, 2012, 756: 175

    Article  ADS  Google Scholar 

  240. Ellis J A. A Bayesian analysis pipeline for continuous GW sources in the PTAband. Class Quantum Grav, 2013, 30(22): 224004

    Article  ADS  Google Scholar 

  241. Taylor S, Ellis J, Gair J. Accelerated Bayesian model-selection and parameter-estimation incontinuous gravitational-wave searches with pulsar-timing arrays. Phys Rev D, 2014, 90(10): 104028

    Article  ADS  Google Scholar 

  242. Wang Y, Mohanty S D, Jenet F A. A coherent method for the detection and parameter estimation of continuous gravitational wave signals using a pulsar timing array. Astrophys J, 2014, 795: 96

    Article  ADS  Google Scholar 

  243. Zhu X J, Hobbs G, Wen L, et al. An all-sky search for continuous gravitational waves in the Parkes pulsar timing array data set. Mon Not R Astron Soc, 2014, 444: 3709–3720

    Article  ADS  Google Scholar 

  244. Zhu X J, Hobbs G, Wen L, et al. Detection and localization of singlesource gravitational waves withpulsar timing arrays. Mon Not R Astron Soc, 2015, 449: 1650–1663

    Article  ADS  Google Scholar 

  245. Yardley D R B, Hobbbs G B, Janet F A, et al. The sensitivity of the Parkes pulsar timing array to individualsources of gravitational waves. Mon Not R Astron Soc, 2010, 407: 669–680

    Article  ADS  Google Scholar 

  246. Verbiest J P W, Balles M, Coles W A, et al. Timing stability of millisecond pulsars and prospects forgravitational-wave detection. Mon Not R Astron Soc, 2009, 400: 951–968

    Article  ADS  Google Scholar 

  247. Arzoumanian Z, Brazier A, Burke-Spolaor S, et al. Gravitational waves from individual supermassive black hole binariesin circular orbits: Limits from the North American nanohertz observatory for gravitational waves. Astrophys J, 2014, 794: 141

    Article  ADS  Google Scholar 

  248. Braginskii V B, Thorne K S. Gravitational-wave bursts with memory and experimental prospects. Nature, 1987, 327: 123–125

    Article  ADS  Google Scholar 

  249. Favata M. Post-Newtonian corrections to the gravitational-wave memory forquasicircular, inspiralling compact binaries. Phys Rev D, 2009, 80(2): 024002

    Article  ADS  Google Scholar 

  250. Seto N. Search for memory and inspiral gravitational waves from supermassive binary black holes with pulsar timing arrays. Mon Not R Astron Soc, 2009, 400: L38–L42

    Article  ADS  Google Scholar 

  251. van Haasteren R, Levin Y. Gravitational-wave memory and pulsar timing arrays. Mon Not R Astron Soc, 2010, 401: 2372–2378

    Article  ADS  Google Scholar 

  252. Pshirkov M S, Baskaran D, Postnov K A. Observing gravitational wave bursts in pulsar timing measurements. Mon Not R Astron Soc, 2010, 402: 417–423

    Article  ADS  Google Scholar 

  253. Madison D R, Cordes J M, Chatterjee S. Assessing pulsar timing array sensitivity to gravitational wavebursts with memory. Astrophys J, 2014, 788: 141

    Article  ADS  Google Scholar 

  254. Cordes J M, Jenet F A. Detecting gravitational wave memory with pulsar timing. Astrophys J, 2012, 752: 54

    Article  ADS  Google Scholar 

  255. Wang J B, Hobbs G B, Coles W, et al. Searching for gravitational wave memory bursts with the Parkes pulsar timing array. Mon Not R Astron Soc, 2015, 446: 1657–1671

    Article  ADS  Google Scholar 

  256. Arzoumanian Z, Brazier A, Burke-Spolaor S, et al. NANOGrav constraints on gravitational wave bursts with memory. arXiv:1501.05343v1

  257. Finn L S, Lommen A N. Detection, localization, and characteriza tion of gravitational wavebursts in a pulsar timing array. Astrophys J, 2010, 718: 1400–1415

    Article  ADS  Google Scholar 

  258. Vilenkin A. Gravitational radiation from cosmic strings. Phys Lett B, 1981, 107: 47–50

    Article  ADS  Google Scholar 

  259. Damour T, Vienkin A. Gravitational wave bursts from cosmic strings. Phys Rev Lett, 2000, 85: 3761

    Article  ADS  Google Scholar 

  260. Siemens X, Creighton J, Maor I, et al. Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints. Phys Rev D, 2006, 73(10): 105001

    Article  ADS  Google Scholar 

  261. Amaro-Seoane P, Sesana A, Hoffman L, et al. Triplets of supermassive black holes: astrophysics, gravitationalwaves and detection. Mon Not R Astron Soc, 2010, 402: 2308–2320

    Article  ADS  Google Scholar 

  262. Deng X. Searching for gravitational wave bursts via Bayesian nonparametricdata analysis with pulsar timing arrays. Phys Rev D, 2014, 0(2): 024020

    Article  ADS  Google Scholar 

  263. Adam R, Ade P A R, Aghanim N, et al. (Planck Collaboration). Planck 2015 results. I. Overview of products and scientific results. arXiv:1502.01582

  264. Bianchini F, Bielewicz P, Lapi A, et al. Cross-correlation between the CMB lensing potential measured by Planck and high-z submillimeter galaxies detected by the Herschel-Atlas Survey. Astrophys J, 2015, 802: 64

    Article  ADS  Google Scholar 

  265. AdeP A R, Akiba Y, Anthony A E, et al. (the Polarbear Collaboration). A measurement of the cosmic microwave background B-mode polarization powerspectrum at sub-degree scales with POLARBEAR. Astrophys J, 2014, 794: 171

    Article  ADS  Google Scholar 

  266. AdeP A R, Aikin R W, Barkats D, et al. Detection of B-mode polarization at degree angular scales by BICEP2. Phys Rev Lett, 2014, 112(24): 241101

    Article  ADS  Google Scholar 

  267. Adam R, Ade P A R, Aghanim N, et al. (Planck Collaboration). The angular power spectrum of polarized dust emission at intermediateand high Galactic latitudes. arXiv:1409.5738

  268. Ade P A R, Aghanim N, Ahmed Z, et al. (BICEP2/Keck and Planck Collaborations). Joint analysis of BICEP2/Keck array and Planck data. Phys Rev Lett, 2015, 114(10): 101301

    Google Scholar 

  269. Naess S, Hasselfield M, McMahon J, et al. The atacama cosmology telescope: CMB polarization at 200 l 9000. J Cosmol Astropart Phys, 2014, 10: 7

    Article  ADS  Google Scholar 

  270. Keisler R, Hoover S, Harrington N, et al. Measurements of subdegree B-mode polarization in the cosmic microwave background from 100 square degrees of SPTpol data. Astrophys J, 2015, 807: 151

    Article  ADS  Google Scholar 

  271. Adam R, Ade P A R, Aghanim N, et al. (Planck Collaboration). Diffuse component separation: Foreground maps. arXiv:1502.01588

  272. Bennett C L, Larson D, Weiland J L, et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results. Astrophys J, 2013, 208: 20

    Article  Google Scholar 

  273. Bender P L. Additional astrophysical objectives for LISA follow-on missions. Class Quantum Grav, 2004, 21: 1203

    Article  ADS  Google Scholar 

  274. Bender P L, Begelman M C. Trends in Space Science and Cosmic Vision 2020. ESA SP-588. Noordwijk: ESA Publications Division, 2005. 33–38

    Google Scholar 

  275. Gong X, Xu S, Bai S, et al. A scientific case study of the ALIA mission. Class Quantum Grav, 2011, 28: 094012

    Article  ADS  Google Scholar 

  276. Gong X, Lau Y K, Xu S, et al. Descope of the ALIA mission. J Phys-Conf Ser, 2015, 610: 12011

    Article  ADS  Google Scholar 

  277. Lau Y K. Feasibility study of gravitational wave detection in space. Report submitted to the National Space Science Center, Chinese Academy of Sciences for the project XDA04070400, 2014

    Google Scholar 

  278. Bender P L, Hils D. Confusion noise level due to galactic and extragalactic binaries. Class Quantum Grav, 1997, 14: 1439–1444

    Article  ADS  Google Scholar 

  279. Farmer A J, Phinney E S. The gravitational wave background from cosmological compact binaries. In: American Astronomical Society Meeting Abstracts, volume 34 of Bulletin of the American Astronomical Society, 2002. 1225

    Google Scholar 

  280. Arun K G, Babak S, Berti E, et al. Massive black hole binary inspirals: Results from the LISA parameter estimation taskforce. Class Quantum Grav, 2009, 26: 094027

    Article  ADS  Google Scholar 

  281. Jennrich O, Binetruy P, Colpi M, et al. Ngo revealing a hidden universe: Opening a new chapter of discovery. Assessment Study Report ESA/SRE(2011)19, European Space Agency, 2011

    Google Scholar 

  282. Zheng W, Hsu H, Zhong M, et al. Accurate and rapid error estimation on global gravitational field from current grace and future grace follow-on missions. Chin Phys B, 2009, 18(08): 3597–3604

    Article  ADS  Google Scholar 

  283. Anselmi A. Assessment of a next generation mission for monitoring the variations of Earth’s gravity. Commercial in Confidence, SD-RPAI-0668, Thales Alenia Space, 2010

    Google Scholar 

  284. Gruber T. Earth System Mass Transport Mission: Concept for a Next Generation Gravity Field Mission. Technical Report NGGM-D, 2014

    Google Scholar 

  285. Sneeuw N. A Semi-analytical Approach to Gravity Field Analysis from Satellite Observations. Dissertation for the Doctoral Degree. Technischen: Technischen University, 2000

    MATH  Google Scholar 

  286. Gao W. Possible application of future satellite gravity mission to earthquake study in China, a scientific case study of the Wenchuan earthquake. In: Hu W R, Xu H Z, eds. GRACE Follow-On in China—A Program of Space Advanced Graivty Measurement, 2015

    Google Scholar 

  287. Xu P, Qiang Li, Bian X, et al. A preliminary study of level 1A data processing of a low-low satellite to satellite tracking mission. J Geod Geodyn, 2015. In press

    Google Scholar 

  288. Thorne K S. Gravitomagnetism, jets in quasars, and the stanford gyroscope experiment. In: Fairbank J D, Deaver Jr B S, Everitt C W F, eds. Near Zero: New Frontiers of Physics, 1988. 573–586

  289. Ciufolini I, Wheeler J A. Gravitation and Inertia. Princeton: Princeton University Press, 1995

    MATH  Google Scholar 

  290. Braginskii V B, Polnarev A G. Relativistic spin-quadrupole gravitational effect. ZhETF Pisma Redaktsiiu, 1980, 31: 444–447

    ADS  Google Scholar 

  291. Mashhoon B, Paik H J, Will C M. Detection of the gravitomagnetic field using an orbiting superconducting gravity gradiometer. Theoretical principles. Phys Rev D, 1989, 39: 2825–2838

    Google Scholar 

  292. Xu P, Qiang L, Dong P, et al. Precision measurement of planetary gravitomagnetic field in general relativity with laser interferometry in space (I)—Theoretical foundations. Preprint, 2015

    Google Scholar 

  293. Clohessy W H, Wiltshire R S. Terminal guidance system for satellite rendezvous. J Aerospace Sci, 1960, 27: 653–65

    Article  MATH  Google Scholar 

  294. Schiff L I. Motion of a gyroscope according to Einstein’s theory of gravitation. Proc Natl Acad Sci USA, 1960, 46: 871–882

    Article  ADS  MathSciNet  MATH  Google Scholar 

  295. Everitt C W F, Debra D B, Parkinson B W, et al. Gravity probe B: Final results of a space experiment to test general relativity. Phys Rev Lett, 2011, 106: 221101

    Article  ADS  Google Scholar 

  296. Ciufolini I. A comprehensive introduction to the LAGEOS gravitomagnetic experiment: From the importance of the gravitomagnetic field in physics to preliminary error analysis and error budget. Int J Mod Phys A, 1989, 4: 3083–3145

    Article  ADS  Google Scholar 

  297. Ciufolini I, Pavlis E C. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature, 2004, 431: 958–960

    Article  ADS  Google Scholar 

  298. Ciufolini I, Paolozzi A, Pavlis E, et al. Testing general relativity and gravitational physics using the LARES satellite. Eur Phys J Plus, 2012, 127: 133

    Article  Google Scholar 

  299. Xu P, Qiang L, Dong P, et al. Precision measurement of planetary gravitomagnetic field in general relativity with laser interferometry in space (II)— Signal to noise ratio analysis. Preprint, 2015

    Google Scholar 

  300. NiW T, Shy J T, Tseng S M, et al. Progress in mission concept study and laboratory development for the ASTROD—Astrodynamical Space Test of Relativity using Optical Devices. Proc SPIE, 1997, 3116: 105

    Article  ADS  Google Scholar 

  301. Ni W T, Sandford M C W, Veillet C, et al. Astrodynamical space test of relativity using optical devices. Adv Space Res, 2003, 32: 1437–1441

    Article  ADS  Google Scholar 

  302. Ni WT. ASTROD and gravitational waves. In: Tsubono K, Fujimoto M-K, Kuroda K, eds. Gravitational Wave Detection. Tokyo: Universal Academy Press, 1997. 117

    Google Scholar 

  303. Liao A C, Ni W T, Shy J T. Weak-light phase locking research for ASTROD (in Chinese). Publ Yunnan Observ, 2002, 3: 88

    ADS  Google Scholar 

  304. Liao A C, Ni W T, Shy J T. Pico-watt and femto-watt weak-light phase locking. Int J Mod Phys D, 2002, 11: 1075–1085

    Article  ADS  Google Scholar 

  305. Dick G J, Strekalov M D, Birnbaum K. Optimal phase lock at femtowatt power levels for coherent optical deep-space transponder. IPN Prog Rep, 2008, 42: 175

    Google Scholar 

  306. Dhurandhar S V, Ni W T, Wang G. Numerical simulation of time delay interferometry for a LISA-like mission with the simplification of having only one interferometer. Adv Space Res, 2013, 51: 198–206

    Article  ADS  Google Scholar 

  307. Wang G, Ni W T. Numerical simulation of time delay interferometry for eLISA/NGO. Class Quantum Grav, 2013, 30: 065011

    Article  ADS  Google Scholar 

  308. Wang G, Ni W T. ASTROD-GW time delay interferometry. Chin Astron Astrophys, 2012, 36: 211

    Article  ADS  Google Scholar 

  309. Wang G, Ni W T. Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris. Chin Phys B, 2013, 22(4): 049501

    Article  ADS  Google Scholar 

  310. Wang G, Ni W T. Orbit optimization and time delay interferometry for inclined ASTROD-GW formation with half-year precessionperiod. Chin Phys B, 2015, 24: 059501

    Article  ADS  Google Scholar 

  311. Amstrong J W, Estabrook F B, Tinto M. Time-delay interferometry for space-based gravitational wave searches. Astrophys J, 1999, 527(2): 814–826

    Article  ADS  Google Scholar 

  312. Tinto M, Dhurandhar S V. Time-delay interferometry. Liv Rev Rel, 2014, 17: 6

    MATH  Google Scholar 

  313. de Vine G, Ware B, McKenzie K, et al. Experimental demonstration of time-delay interferometry for the laser interferometer space antenna. Phys Rev Lett, 2010, 104(21): 211103

    Article  ADS  Google Scholar 

  314. Thorne K S. Gravitational waves. In: Kolb E W, Peccei R D, eds. Particle and Nuclear Astrophysics and Cosmology in the Next Millennium. Singapore: World Scientific, 1995. 160

    Google Scholar 

  315. Ni W T. Gravitational wave, dark energy and inflation. Mod Phys Lett A, 2010, 25: 922–935

    Article  ADS  Google Scholar 

  316. Kuroda K, Ni W T, Pan W P. Gravitational waves: Classification, methods of detection, sensitivities, and sources. Int J Mod Phys D, 2015, 24: 1530031. In: Ni W T, ed. One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity. Singapore: World Scientific, 2015. Chapter 11

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Blair, David H. Reitze, XingJiang Zhu or Yun-Kau Lau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blair, D., Ju, L., Zhao, C. et al. Gravitational wave astronomy: the current status. Sci. China Phys. Mech. Astron. 58, 120402 (2015). https://doi.org/10.1007/s11433-015-5748-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5748-6

Keywords

Navigation