Skip to main content
Log in

Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions

  • Review
  • Special Topic: Optomechanics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Recently, cavity optomechanics has become a rapidly developing research field exploring the coupling between the optical field and mechanical oscillation. Cavity optomechanical systems were predicted to exhibit rich and nontrivial effects due to the nonlinear optomechanical interaction. However, most progress during the past years have focused on the linearization of the optomechanical interaction, which ignored the intrinsic nonlinear nature of the optomechanical coupling. Exploring nonlinear optomechanical interaction is of growing interest in both classical and quantum mechanisms, and nonlinear optomechanical interaction has emerged as an important new frontier in cavity optomechanics. It enables many applications ranging from single-photon sources to generation of nonclassical states. Here, we give a brief review of these developments and discuss some of the current challenges in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kippenberg T J, Vahala K J. Cavity optomechanics: Back-action at the mesoscale. Science, 2008, 321: 1172–1176

    ADS  Google Scholar 

  2. Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics. arXiv:1303.0733

  3. Favero I, Karrai K. Optomechanics of deformable optical cavities. Nat Photonics, 2009, 3: 201–205

    ADS  Google Scholar 

  4. Jiang X, Lin Q, Rosenberg J, et al. High-Q double-disk microcavities for cavity optomechanics. Opt Express, 2009, 17: 20911–20919

    ADS  Google Scholar 

  5. Nomura M. GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators. Opt Express, 2012, 20: 5204–5212

    ADS  Google Scholar 

  6. Sun X, Zhang X, Schuck C, et al. Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium. Sci Rep, 2013, 3: 1436

    ADS  Google Scholar 

  7. Chang D E, Regal C A, Papp S B, et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc Natl Acad Sci, 2010, 107: 1005–1010

    ADS  Google Scholar 

  8. Jiang W C, Lu X, Zhang J, et al. High-frequency silicon optomechanical oscillator with an ultralow threshold. Opt Express, 2012, 20: 15991–15996

    Google Scholar 

  9. Wilson D J, Regal C A, Papp S B, et al. Cavity optomechanics with stoichiometric SiN films. Phys Rev Lett, 2009, 103: 207204

    ADS  Google Scholar 

  10. Hauer B D, Doolin C, Beach K S D, et al. A general procedure for thermomechanical calibration of nano/micro-mechanical resonators. Ann Phys, 2013, 339: 181–207

    ADS  Google Scholar 

  11. Shin H, Rakich P T. Optomechanics: Photons that pivot and shuttle. Nat nanotechnol, 2014, 9: 878–880

    ADS  Google Scholar 

  12. Marquardt F, Chen J P, Clerk A A, et al. Quantum theory of cavityassisted sideband cooling of mechanical motion. Phys Rev Lett, 2007, 99: 093902

    ADS  Google Scholar 

  13. Teufel J D, Donner T, Li D, et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature, 2011, 475: 359–363

    ADS  Google Scholar 

  14. Chan J, Alegre T P M, Safavi-Naeini A H, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478: 89–92

    ADS  Google Scholar 

  15. Li Y, Wu L A, Wang Y D, et al. Nondeterministic ultrafast ground-state cooling of a mechanical resonator. Phys Rev B, 2011, 84: 094502

    ADS  Google Scholar 

  16. Zhu J, Li G. Ground-state cooling of a nanomechanical resonator with a triple quantum dot via quantum interference. Phys Rev A, 2012, 86: 053828

    ADS  Google Scholar 

  17. Gu W, Li G. Quantum interference effects on ground-state optomechanical cooling. Phys Rev A, 2013, 87: 025804

    ADS  Google Scholar 

  18. Gu W, Li G, Yang Y. Generation of squeezed states in a movable mirror via dissipative optomechanical coupling. Phys Rev A, 2013, 88: 013835

    ADS  Google Scholar 

  19. Nunnenkamp A, Børkje K, Girvin S M. Cooling in the single-photon strong-coupling regime of cavity optomechanics. Phys Rev A, 2012, 85: 051803

    ADS  Google Scholar 

  20. Zhang J Q, Li Y, Feng M, et al. Precision measurement of electrical charge with optomechanically induced transparency. Phys Rev A, 2012, 86: 053806

    ADS  Google Scholar 

  21. Gavartin E, Verlot P, Kippenberg T J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat nanotechnol, 2012, 7: 509–514

    ADS  Google Scholar 

  22. Schliesser A, Arcizet O, Riviere R, et al. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat Phys, 2009, 5: 509–514

    Google Scholar 

  23. Basiri-Esfahani S, Akram U, Milburn G J. Phonon number measurements using single photon opto-mechanics. New J Phys, 2012, 14: 085017

    Google Scholar 

  24. Krause A G, Winger M, Blasius T D, et al. A high-resolution microchip optomechanical accelerometer. Nat Photonics, 2012, 6: 768–772

    ADS  Google Scholar 

  25. Liu F, Alaie S, Leseman Z C, et al. Sub-pg mass sensing and measurement with an optomechanical oscillator. Opt Express, 2013, 21: 19555–19567

    ADS  Google Scholar 

  26. Agatsuma K, Friedrich D, Ballmer S, et al. Precise measurement of laser power using an optomechanical system. Opt Express, 2014, 22: 2013–2030

    ADS  Google Scholar 

  27. Caves C M. Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys Rev Lett, 1980, 45: 75

    ADS  Google Scholar 

  28. Buonanno A, Chen Y. Scaling law in signal recycled laser-interferometer gravitational-wave detectors. Phys Rev D, 2003, 67: 062002

    ADS  Google Scholar 

  29. Conti L, De Rosa M, Marin F, et al. Room temperature gravitational wave bar detector with optomechanical readout. J Appl Phys, 2003, 93: 3589–3595

    ADS  Google Scholar 

  30. Weis S, Rivière R, Deléglise S, et al. Optomechanically induced transparency. Science, 2010, 330: 1520–1523

    ADS  Google Scholar 

  31. Safavi-Naeini A H, Alegre T PM, Chan J, et al. Electromagnetically induced transparency and slow light with optomechanics. Nature, 2011, 472: 69–73

    ADS  Google Scholar 

  32. Chang Y, Shi T, Liu Y, et al. Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities. Phys Rev A, 2011, 83: 063826

    ADS  Google Scholar 

  33. Wang H, Gu X, Liu Y, et al. Optomechanical analog of two-color electromagnetically-induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys Rev A, 2014, 90: 023817

    ADS  Google Scholar 

  34. Agarwal G S, Huang S. Electromagnetically induced transparency in mechanical effects of light. Phys Rev A, 2010, 81: 041803

    ADS  Google Scholar 

  35. Qin J, Zhao C, Ma Y, et al. Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency. Phys Rev A, 2014, 89: 041802

    ADS  Google Scholar 

  36. Ma P C, Zhang J Q, Xiao Y, et al. Tunable double optomechanically induced transparency in an optomechanical system. Phys Rev A, 2014, 90: 043825

    ADS  Google Scholar 

  37. Stannigel K, Rabl P, Sørensen A S, et al. Optomechanical transducers for long-distance quantum communication. Phys Rev Lett, 2010, 105: 220501

    ADS  Google Scholar 

  38. Safavi-Naeini A H, Painter O. Proposal for an optomechanical traveling wave phononphoton translator. New J Phys, 2011, 13: 013017

    Google Scholar 

  39. Yan Y, Gu W J, Li G X. Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical mirrors via dissipative optomechanical coupling. Sci China-Phys Mech Astron, 2015, 58: 050306

    Google Scholar 

  40. Zhang W Z, Cheng J, Zhou L. Quantum control gate in cavity optomechanical system. J Phys B, 2015, 48: 015502

    ADS  Google Scholar 

  41. Chang D E, Safavi-Naeini A H, Hafezi M, et al. Slowing and stopping light using an optomechanical crystal array. New J Phys, 2011, 13: 023003

    Google Scholar 

  42. Chen B, Jiang C, Zhu K D. Slow light in a cavity optomechanical system with a Bose-Einstein condensate. Phys Rev A, 2011, 83: 055803

    ADS  Google Scholar 

  43. Jiang C, Liu H, Cui Y, et al. Electromagnetically induced transparency and slow light in two-mode optomechanics. Opt Express, 2013, 21: 12165–12173

    Google Scholar 

  44. Zhan X G, Si L G, Zheng A S, et al. Tunable slow light in a quadratically coupled optomechanical system. J Phys B, 2013, 46: 025501

    ADS  Google Scholar 

  45. Purdy T P, Yu P L, Peterson R W, et al. Strong optomechanical squeezing of light. Phys Rev X, 2013, 3: 031012

    Google Scholar 

  46. Nunnenkamp A, Børkje K, Harris J G E, et al. Cooling and squeezing via quadratic optomechanical coupling. Phys Rev A, 2010, 82: 021806

    ADS  Google Scholar 

  47. Safavi-Naeini A H, Gröblacher S, Hill J T, et al. Squeezed light from a silicon micromechanical resonator. Nature, 2013, 500: 185–189

    ADS  Google Scholar 

  48. Piazza F, Strack P, Zwerger W. Bose-Einstein condensation versus Dicke-Hepp-Lieb transition in an optical cavity. Ann Phys, 2013, 339: 135–159

    ADS  MathSciNet  Google Scholar 

  49. Kleckner D, Pikovski I, Jeffrey E, et al. Creating and verifying a quantum superposition in a micro-optomechanical system. New J Phys, 2008, 10: 095020

    Google Scholar 

  50. Chen Y. Macroscopic quantum mechanics: Theory and experimental concepts of optomechanics. J Phys B, 2013, 46: 104001

    ADS  Google Scholar 

  51. Pikovski I, Vanner M R, Aspelmeyer M, et al. Probing Planck-scale physics with quantum optics. Nat Phys, 2012, 8: 393–397

    Google Scholar 

  52. Romero-Isart O, Pflanzer A C, Blaser F, et al. Large quantum superpositions and interference of massive nanometer-sized objects. Phys Rev Lett, 2011, 107: 020405

    ADS  Google Scholar 

  53. Heinrich G, Harris J G E, Marquardt F. Photon shuttle: Landau-Zener-Stückelberg dynamics in an optomechanical system. Phys Rev A, 2010, 81: 011801

    ADS  Google Scholar 

  54. Wu H, Heinrich G, Marquardt F. The effect of Landau-Zener dynamics on phonon lasing. New J Phys, 2013, 15: 123022

    Google Scholar 

  55. Jiang C, Cui Y, Liu H. Controllable four-wave mixing based on mechanical vibration in two-mode optomechanical systems. Europhys Lett, 2013, 104: 34004

    ADS  Google Scholar 

  56. Boller K J, Imamolu A, Harris S E. Observation of electromagnetically induced transparency. Phys Rev Lett, 1991, 66: 2593

    ADS  Google Scholar 

  57. Wu Y, Yang X. Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis. Phys Rev A, 2005, 71: 053806

    ADS  Google Scholar 

  58. Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media. Rev Mod Phys, 2005, 77: 633

    ADS  Google Scholar 

  59. Xie X T, Li W, Li J, et al. Transverse acoustic wave in molecular magnets via electromagnetically induced transparency. Phys Rev B, 2007, 75: 184423

    ADS  Google Scholar 

  60. Si L G, Lü X Y, Hao X, et al. Dynamical control of soliton formation and propagation in a Y-type atomic system with dual ladder-type electromagnetically induced transparency. J Phys B, 2010, 43: 065403

    ADS  Google Scholar 

  61. Wu Y, Yang X. Four-wave mixing in molecular magnets via electromagnetically induced transparency. Phys Rev B, 2007, 76: 054425

    ADS  Google Scholar 

  62. Wu Y, Deng L. Ultraslow optical solitons in a cold four-state medium. Phys Rev Lett, 2004, 93: 143904

    ADS  Google Scholar 

  63. Wu Y, Deng L. Ultraslow bright and dark optical solitons in a cold three-state medium. Opt Lett, 2004, 29: 2064–2066

    ADS  Google Scholar 

  64. Bao Q Q, Fang B, Yang X, et al. Marking slow light signals with fast optical precursors in the regime of electromagnetically induced transparency. JOSA B, 2014, 31: 62–66

    ADS  Google Scholar 

  65. Si L G, Liu J B, Lü X Y, et al. Ultraslow temporal vector optical solitons in a cold five-state atomic medium under Raman excitation. J Phys B, 2008, 41: 215504

    ADS  Google Scholar 

  66. Fleischhauer M, Lukin M D. Dark-state polaritons in electromagnetically induced transparency. Phys Rev Lett, 2000, 84: 5094

    ADS  Google Scholar 

  67. Xu G F, Law C K. Dark states of a moving mirror in the single-photon strong-coupling regime. Phys Rev A, 2013, 87: 053849

    ADS  Google Scholar 

  68. Dong C, Fiore V, Kuzyk M C, et al. Optomechanical dark mode. Science, 2012, 338: 1609–1613

    ADS  Google Scholar 

  69. Vitali D, Gigan S, Ferreira A, et al. Optomechanical entanglement between a movable mirror and a cavity field. Phys Rev Lett, 2007, 98: 030405

    ADS  Google Scholar 

  70. Lin Q, He B, Ghobadi R, et al. Fully quantum approach to optomechanical entanglement. Phys Rev A, 2014, 90: 022309

    ADS  Google Scholar 

  71. Chen R X, Shen L T, Yang Z B, et al. Enhancement of entanglement in distant mechanical vibrations via modulation in a coupled optomechanical system. Phys Rev A, 2014, 89: 023843

    ADS  Google Scholar 

  72. Ma Y H, Wu E. Macroscopic entanglement of remote optomechanical systems assisted by parametric interactions. Int J Theor Phys, 2014: 1–8

    Google Scholar 

  73. Farace A, Ciccarello F, Fazio R, et al. Steady-state entanglement activation in optomechanical cavities. Phys Rev A, 2014, 89: 022335

    ADS  Google Scholar 

  74. Ma J, You C, Si L G, et al. Optomechanically induced transparency in the mechanical-mode splitting regime. Opt Lett, 2014, 39: 4180–4183

    ADS  Google Scholar 

  75. Xiong H, Si L G, Zheng A S, et al. Higher-order sidebands in optomechanically induced transparency. Phys Rev A, 2012, 86: 013815

    ADS  Google Scholar 

  76. Xiong H, Si L G, Lü X Y, et al. Nanosecond-pulse-controlled higher-order sideband comb in a GaAs optomechanical disk resonator in the non-perturbative regime. Ann Phys, 2014, 349: 43–54

    ADS  Google Scholar 

  77. Ma J, You C, Si L G, et al. Formation and manipulation of optomechanical chaos via a bichromatic driving. Phys Rev A, 2014, 90: 043839

    ADS  Google Scholar 

  78. Xiong H, Si L G, Lü X Y, et al. Carrier-envelope phase-dependent effect of high-order sideband generation in ultrafast driven optomechanical system. Opt Lett, 2013, 38: 353–355

    ADS  Google Scholar 

  79. Gong Z R, Ian H, Liu Y, et al. Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system. Phys Rev A, 2009, 80: 065801

    ADS  Google Scholar 

  80. Lü X Y, Zhang W M, Ashhab S, et al. Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems. Sci Rep, 2013, 3: 2943

    Google Scholar 

  81. Chen B, Jiang C, Zhu K D. Tunable all-optical Kerr switch based on a cavity optomechanical system with a BoseEinstein condensate. JOSA B, 2011, 28: 2007–2013

    ADS  Google Scholar 

  82. Rabl P. Photon blockade effect in optomechanical systems. Phys Rev Lett, 2011, 107: 063601

    ADS  Google Scholar 

  83. Miranowicz A, Paprzycka M, Liu Y, et al. Two-photon and three-photon blockades in driven nonlinear systems. Phys Rev A, 2013, 87: 023809

    ADS  Google Scholar 

  84. Liao J Q, Nori F. Photon blockade in quadratically coupled optomechanical systems. Phys Rev A, 2013, 88: 023853

    ADS  Google Scholar 

  85. Qiu L, Gan L, Ding W, et al. Single-photon generation by pulsed laser in optomechanical system via photon blockade effect. JOSA B, 2013, 30: 1683–1687

    Google Scholar 

  86. Flayac H, Savona V. Input-output theory of the unconventional photon blockade. Phys Rev A, 2013, 88: 033836

    ADS  Google Scholar 

  87. Law C K. Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. Phys Rev A, 1995, 51: 2537

    ADS  Google Scholar 

  88. Doolin C, Hauer B D, Kim P H, et al. Nonlinear optomechanics in the stationary regime. Phys Rev A, 2014, 89: 053838

    ADS  Google Scholar 

  89. Lü X Y, Liao J Q, Tian L, et al. Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity. arXiv:1403.0049

  90. Rips S, Wilson-Rae I, Hartmann M J. Nonlinear nanomechanical resonators for quantum optoelectromechanics. Phys Rev A, 2014, 89: 013854

    ADS  Google Scholar 

  91. Huang S, Agarwal G S. Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes. Phys Rev A, 2011, 83: 023823

    ADS  Google Scholar 

  92. Xiong H, Si L G, Ding C, et al. Second-harmonic generation of cylindrical electromagnetic waves propagating in an inhomogeneous and nonlinear medium. Phys Rev E, 2012, 85: 016606

    ADS  Google Scholar 

  93. Xiong H, Si L G, Ding C, et al. Solutions of the cylindrical nonlinear Maxwell equations. Phys Rev E, 2012, 85: 016602

    ADS  Google Scholar 

  94. Xiong H, Si L G, Ding C, et al. Classical theory of cylindrical nonlinear optics: Sum-and difference-frequency generation. Phys Rev A, 2011, 84: 043841

    ADS  Google Scholar 

  95. Xiong H, Si L G, Guo J F, et al. Classical theory of cylindrical nonlinear optics: Second-harmonic generation. Phys Rev A, 2011, 83: 063845

    ADS  Google Scholar 

  96. Bloembergen N. From nanosecond to femtosecond science. Rev Mod Phys, 1999, 71: S283

    Google Scholar 

  97. Huang P, Xie XT, Lü X Y, et al. Carrier-envelope-phase-dependent effects of high-order harmonic generation in a strongly driven two-level atom. Phys Rev A, 2009, 79: 043806

    ADS  Google Scholar 

  98. Wu Y, Yang X. Carrier-envelope phase-dependent atomic coherence and quantum beats. Phys Rev A, 2007, 76: 013832

    ADS  Google Scholar 

  99. Kippenberg T J, Rokhsari H, Carmon T, et al. Analysis of radiationpressure induced mechanical oscillation of an optical microcavity. Phys Rev Lett, 2005, 95: 033901

    ADS  Google Scholar 

  100. Phelps G A, Meystre P. Laser phase noise effects on the dynamics of optomechanical resonators. Phys Rev A, 2011, 83: 063838

    ADS  Google Scholar 

  101. Bakemeier L, Alvermann A, Fehske H. Route to chaos in optomechanics. arXiv:1407.5529

  102. Carmon T, Cross M C, Vahala K J. Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure. Phys Rev Lett, 2007, 98: 167203

    ADS  Google Scholar 

  103. Carmon T, Rokhsari H, Yang L, et al. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys Rev Lett, 2005, 94: 223902

    ADS  Google Scholar 

  104. Shi Y, Peng D. Dynamics of social tolerance in the economic interaction model with three groups. Appl Econ Lett, 2014, 21: 665–670

    Google Scholar 

  105. Chandre C, Govin M, Jauslin H R. Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems. Phys Rev E, 1998, 57: 1536

    ADS  MathSciNet  Google Scholar 

  106. Vahedi M, Bahrampour A R, Safari H R. Analysis of chaotic behavior in an optical microresonator. Opt Commun, 2014, 332: 31–35

    ADS  Google Scholar 

  107. Zhang K, Chen W, Bhattacharya M, et al. Hamiltonian chaos in a coupled BEC-optomechanical-cavity system. Phys Rev A, 2010, 81: 013802

    ADS  Google Scholar 

  108. Larson J, Horsdal M. Photonic Josephson effect, phase transitions, and chaos in optomechanical systems. Phys Rev A, 2011, 84: 021804

    ADS  Google Scholar 

  109. Marino F, Marin F. Coexisting attractors and chaotic canard explosions in a slow-fast optomechanical system. Phys Rev E, 2013, 87: 052906

    ADS  Google Scholar 

  110. Sun Y, Sukhorukov A A. Chaotic oscillations of coupled nanobeam cavities with tailored optomechanical potentials. Opt Lett, 2014, 39: 3543–3546

    Google Scholar 

  111. Ludwig M, Kubala B, Marquardt F. The optomechanical instability in the quantum regime. New J Phys, 2008, 10: 095013

    Google Scholar 

  112. Qian J, Clerk A A, Hammerer K, et al. Quantum signatures of the optomechanical instability. Phys Rev Lett, 2012, 109: 253601

    ADS  Google Scholar 

  113. Hong T, Yang H, Miao H, et al. Open quantum dynamics of single-photon optomechanical devices. Phys Rev A, 2013, 88: 023812

    ADS  Google Scholar 

  114. Kronwald A, Ludwig M, Marquardt F. Full photon statistics of a light beam transmitted through an optomechanical system. Phys Rev A, 2013, 87: 013847

    ADS  Google Scholar 

  115. Gangat A A, Stace T M, Milburn G J. Phonon number quantum jumps in an optomechanical system. New J Phys, 2011, 13: 043024

    Google Scholar 

  116. Pernice W H P, Li M, Tang H X. A mechanical Kerr effect in deformable photonic media. Appl Phys Lett, 2009, 95: 123507

    ADS  Google Scholar 

  117. Xu X W, Li Y J, Liu Y. Photon-induced tunneling in optomechanical systems. Phys Rev A, 2013, 87: 025803

    ADS  Google Scholar 

  118. Liao J Q, Cheung H K, Law C K. Spectrum of single-photon emission and scattering in cavity optomechanics. Phys Rev A, 2012, 85: 025803

    ADS  Google Scholar 

  119. Liao J Q, Law C K. Correlated two-photon scattering in cavity optomechanics. Phys Rev A, 2013, 87: 043809

    ADS  Google Scholar 

  120. Nunnenkamp A, Børkje K, Girvin S M. Single-photon optomechanics. Phys Rev Lett, 2011, 107: 063602

    ADS  Google Scholar 

  121. Nation P D. Nonclassical mechanical states in an optomechanical micromaser analog. Phys Rev A, 2013, 88: 053828

    ADS  Google Scholar 

  122. Li J, Grblacher S, Paternostro M. Enhancing non-classicality in mechanical systems. New J Phys, 2013, 15: 033023

    Google Scholar 

  123. Xu XW, Wang H, Zhang J, et al. Engineering of nonclassical motional states in optomechanical systems. Phys Rev A, 2013, 88: 063819

    ADS  MathSciNet  Google Scholar 

  124. Stannigel K, Komar P, Habraken S J M, et al. Optomechanical quantum information processing with photons and phonons. Phys Rev Lett, 2012, 109: 013603

    ADS  Google Scholar 

  125. Ludwig M, Safavi-Naeini A H, Painter O, et al. Enhanced quantum nonlinearities in a two-mode optomechanical system. Phys Rev Lett, 2012, 109: 063601

    ADS  Google Scholar 

  126. Kómár P, Bennett S D, Stannigel K, et al. Single-photon nonlinearities in two-mode optomechanics. Phys Rev A, 2013, 87: 013839

    ADS  Google Scholar 

  127. Lemonde M A, Didier N, Clerk A A. Nonlinear interaction effects in a strongly driven optomechanical cavity. Phys Rev Lett, 2013, 111: 053602

    ADS  Google Scholar 

  128. Børkje K, Nunnenkamp A, Teufel J D, et al. Signatures of nonlinear cavity optomechanics in the weak coupling regime. Phys Rev Lett, 2013, 111: 053603

    ADS  Google Scholar 

  129. Kronwald A, Marquardt F. Optomechanically induced transparency in the nonlinear quantum regime. Phys Rev Lett, 2013, 111: 133601

    ADS  Google Scholar 

  130. Brennecke F, Ritter S, Donner T, et al. Cavity optomechanics with a Bose-Einstein condensate. Science, 2008, 322: 235–238

    ADS  Google Scholar 

  131. Eichenfield M, Chan J, Camacho R M, et al. Optomechanical crystals. Nature, 2009, 462: 78–82

    ADS  Google Scholar 

  132. Heikkilä T T, Massel F, Tuorila J, et al. Enhancing optomechanical coupling via the Josephson effect. Phys Rev Lett, 2014, 112: 203603

    ADS  Google Scholar 

  133. Johansson J R, Johansson G, Nori F. Optomechanical-like coupling between superconducting resonators. arXiv:1403.4341

  134. Rimberg A J, Blencowe M P, Armour A D, et al. A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime. New J Phys, 2014, 16: 055008

    Google Scholar 

  135. Lü X Y, Wu Y, Johansson J R, et al. Squeezed optomechanics with phase-matched amplification and dissipation. arXiv:1412.2864

  136. Makris K G, El-Ganainy R, Christodoulides D N, et al. Beam dynamics in PT-symmetric optical lattices. Phys Rev Lett, 2008, 100: 103904

    ADS  Google Scholar 

  137. Jing H, Özdemir S K, Lü X Y, et al. PT-symmetric phonon laser. Phys Rev Lett, 2014, 113: 053604

    ADS  Google Scholar 

  138. Jing H, Geng Z, Özdemir S K, et al. PT-symmetric optomechanically-induced transparency. arXiv:1411.7115

  139. Xu X W, Liu Y, Sun C P, et al. Mechanical PT symmetry in coupled optomechanical systems. arXiv:1402.7222

  140. Xuereb A, Genes C, Dantan A. Strong coupling and long-range collective interactions in optomechanical arrays. Phys Rev Lett, 2012, 109: 223601

    ADS  Google Scholar 

  141. Ludwig M, Marquardt F. Quantum many-body dynamics in optomechanical arrays. Phys Rev Lett, 2013, 111: 073603

    ADS  Google Scholar 

  142. Xuereb A, Genes C, Pupillo G, et al. Reconfigurable long-range phonon dynamics in optomechanical arrays. Phys Rev Lett, 2014, 112: 133604

    ADS  Google Scholar 

  143. Gavartin E, Verlot P, Kippenberg T J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat Nanotechnol, 2012, 7: 509–514

    ADS  Google Scholar 

  144. Ramos T, Sudhir V, Stannigel K, et al. Nonlinear quantum optomechanics via individual intrinsic two-level defects. Phys Rev Lett, 2013, 110: 193602

    ADS  Google Scholar 

  145. Shahidani S, Naderi MH, Soltanolkotabi M. Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors. Phys Rev A, 2013, 88: 053813

    ADS  Google Scholar 

  146. Boriskina S V, Povinelli M, Astratov V N, et al. Collective phenomena in photonic, plasmonic and hybrid structures. Opt Express, 2011, 19: 22024–22028

    ADS  Google Scholar 

  147. Yang X, Liu Y, Oulton R F, et al. Optical forces in hybrid plasmonic waveguides. Nano Lett, 2011, 11: 321–328

    ADS  Google Scholar 

  148. Jiang C, Cui Y, Zhu K D. Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems. Opt Express, 2014, 22: 13773–13783

    Google Scholar 

  149. Yin Z Q, Zhao N, Li T C. Hybrid opto-mechanical systems with nitrogen-vacancy centers. arXiv:1501.00636

  150. Kipf T, Agarwal G S. Superradiance and collective gain in multimode optomechanics. Phys Rev A, 2014, 90: 053808

    ADS  Google Scholar 

  151. Santos J P, Semião F L, Furuya K. Probing the quantum phase transition in the Dicke model through mechanical vibrations. Phys Rev A, 2010, 82: 063801

    ADS  Google Scholar 

  152. Bohnet J G, Chen Z, Weiner J M, et al. A steady-state superradiant laser with less than one intracavity photon. Nature, 2012, 484: 78–81

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to LiuGang Si, XinYou Lv or Ying Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, H., Si, L., Lv, X. et al. Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions. Sci. China Phys. Mech. Astron. 58, 1–13 (2015). https://doi.org/10.1007/s11433-015-5648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-015-5648-9

Keywords

Navigation