Skip to main content
Log in

Constraints on the extensions to the base ΛCDM model from BICEP2, Planck and WMAP

  • Article
  • Special Topic: BICEP2 and Beyond
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Recently Background Imaging of Cosmic Extragalactic Polarization (B2) discovered the relic gravitational waves at 7.0σ confidence level. However, the other cosmic microwave background (CMB) data, for example Planck data released in 2013 (P13), prefer a much smaller amplitude of the primordial gravitational waves spectrum if a power-law spectrum of adiabatic scalar perturbations is assumed in the six-parameter ΛCDM cosmology. In this paper, we explore whether the wCDM model and the running spectral index can relax the tension between B2 and other CMB data. Specifically we found that a positive running of running of spectral index is preferred at 1.7σ level from the combination of B2, P13 and WMAP Polarization data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. arXiv:1303.5076 [astro-ph.CO]

  2. Grishchuk L P. Amplification of gravitational waves in an istropic universe. Sov Phys JETP, 1975, 40: 409–415 (Zh Eksp Teor Fiz, 1974, 67: 825–838)

    ADS  Google Scholar 

  3. Starobinsky A A. Relict gravitation radiation spectrum and initial state of the universe (in Russian). JETP Lett, 1979, 30: 682–685 (Pisma Zh Eksp Teor Fiz, 1979, 30: 719)

    ADS  Google Scholar 

  4. Rubakov V A, Sazhin M V, Veryaskin A V. Graviton creation in the inflationary universe and the grand unification scale. Phys Lett B, 1982, 115: 189–192

    Article  ADS  Google Scholar 

  5. Crittenden R, Bond J R, Davis R L, et al. The imprint of gravitational waves on the cosmic microwave background. Phys Rev Lett, 1993, 71: 324–327

    Article  ADS  Google Scholar 

  6. Krauss L M, Wilczek F. Using cosmology to establish the quantization of gravity. Phys Rev D, 2014, 89: 047501

    Article  ADS  Google Scholar 

  7. WMAP Collaboration. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results. Astrophys J Suppl, 2013, 208: 19

    Article  Google Scholar 

  8. Beutler F, Blake C, Collesset M, et al. The 6dF galaxy survey: Baryon acoustic oscillations and the local Hubble constant. Mon Not R Astron Soc, 2011, 416: 3017–3032; Padmanabhan N, Xu X, Eisenstein D J, et al. A 2% distance to z = 0.35 by reconstructing baryon acoustic oscillations—I: Methods and application to the Sloan Digital Sky Survey. arXiv:1202.0090 [astro-ph.CO]; Anderson L, Aubourg E, Bailey S, et al. The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample. Mon Not R Astron Soc, 2013, 427: 3435–3467; Blake C, Brough S, Colless M, et al. The WiggleZ dark energy survey: Joint measurements of the expansion and growth history at z < 1. Mon Not R Astron Soc, 2012, 425: 405–414

    Article  ADS  Google Scholar 

  9. Riess A G, Macri L, Casertano S, et al. A 3% solution: Determination of the Hubble constant with the Hubble space telescope and wide field Camera 3. Astrophys J, 2011, 730: 119 [Erratum-ibid. 2011, 732: 129]

    Article  ADS  Google Scholar 

  10. Atacama Cosmology Telescope Collaboration. The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data. J Cosmol Astropart Phys, 2013, 1310: 060

    Google Scholar 

  11. Story K T, Reichardt C L, Hou Z, et al. A measurement of the cosmic microwave background damping tail from the 2500-square-degree SPT-SZ survey. Astrophys J, 2013, 779: 86

    Article  ADS  Google Scholar 

  12. Cheng C, Huang Q G, Ma Y Z. Constraints on single-field inflation with WMAP, SPT and ACT data—a last-minute stand before Planck. J Cosmol Astropart Phys, 2013, 1307: 018

    Article  ADS  Google Scholar 

  13. Zhao W, Cheng C, Huang Q G. Hint of relic gravitational waves in the Planck and WMAP data. arXiv:1403.3919 [astro-ph.CO]

  14. Zhao W, Grishchuk L P. Relic gravitational waves: Latest revisions and preparations for new data. Phys Rev D, 2010, 82: 123008

    Article  ADS  Google Scholar 

  15. BICEP2 Collaboration. BICEP2 I: Detection of B-mode polarization at degree angular scales. arXiv:1403.3985 [astro-ph.CO]

  16. Cheng C, Huang Q G. The tilt of primordial gravitational waves spectra from BICEP2. arXiv:1403.5463 [astro-ph.CO]

  17. Cheng C, Huang Q G. Constraints on the cosmological parameters from BICEP2, Planck and WMAP. arXiv:1403.7173 [astro-ph.CO]

  18. Guth A H. The inflationary universe: A possible solution to the horizon and flatness problems. Phys Rev D, 1981, 23: 347–356

    Article  ADS  Google Scholar 

  19. Linde A D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys Lett B, 1982, 108: 389–393

    Article  ADS  MathSciNet  Google Scholar 

  20. Albrecht A, Steinhardt P J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys Rev Lett, 1982, 48: 1220–1223

    Article  ADS  Google Scholar 

  21. Lewis A. What an amazing result, which raises a lot of interesting questions! (http://cosmocoffee.info/viewtopic.php?t=2302)

  22. Lewis A, Bridle S. Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys Rev D, 2002, 66: 103511; Lewis A. Efficient sampling of fast and slow cosmological parameters. Phys Rev D, 2013, 87(10): 103529; Neal R M. Taking bigger metropolis steps by dragging fast variables. arXiv:math/0502099; Lewis A, Challinor A, Lasenby A. Efficient computation of CMB anisotropies in closed FRW models. Astrophys J, 2000, 538: 473–476; Howlett C, Lewis A, Hall A, et al. CMB power spectrum parameter degeneracies in the era of precision cosmology. J Cosmol Astropart Phys, 2012, 1204: 027; Challinor A, Lewis A. The linear power spectrum of observed source number counts. Phys Rev D, 2011, 84: 043516; Lewis A, Challinor A. The 21 cm angular-power spectrum from the dark ages. Phys Rev D, 2007, 76: 083005; Seljak U, Zaldarriaga M. A line of sight integration approach to cosmic microwave background anisotropies. Astrophys J, 1996, 469: 437–444; Zaldarriaga M, Seljak U, Bertschinger E. Integral solution for the microwave background anisotropies in nonflat universes. Astrophys J, 1998, 494: 491–502

    Article  ADS  Google Scholar 

  23. Conley A, Guy J, Sullivan M, et al. Supernova constraints and systematic uncertainties from the first 3 years of the supernova legacy survey. Astrophys J Suppl, 2011, 192: 1–15

    Article  ADS  Google Scholar 

  24. Cheng C, Huang Q G. The dark side of the universe after Planck. Phys Rev D, 2014, 89: 043003

    Article  ADS  Google Scholar 

  25. Li H, Xia J Q, Zhang X M. Global fitting analysis on cosmological models after BICEP2. arXiv:1404.0238 [astro-ph.CO]

  26. Aslanyan G, Price L C, Abazajian K N, et al. The knotted sky I: Planck constraints on the primordial power spectrum. arXiv:1403.5849 [astroph. CO]

  27. Abazajian K N, Aslanyan G, Easther R, et al. The knotted sky II: Does BICEP2 require a nontrivial primordial power spectrum? arXiv:1403.5922 [astro-ph.CO]

  28. Pogosian L, Tye S H H, Wasserman I, et al. Observational constraints on cosmic string production during brane inflation. Phys Rev D, 2003, 68: 023506 [Erratum-ibid. D, 2006, 73: 089904]

    Article  ADS  Google Scholar 

  29. Wyman M, Pogosian L, Wasserman I. Bounds on cosmic strings from WMAP and SDSS. Phys Rev D, 2005, 72: 023513 [Erratum-ibid. D, 2006, 73: 089905]

    Article  ADS  Google Scholar 

  30. Joergensen J, Sannino F, Svendsen O. BICEP2 hints towards quantum corrections for non-minimally coupled inflationary theories. arXiv:1403.3289 [hep-ph]

  31. Nakayama K, Takahashi F. Higgs chaotic inflation and the primordial B-mode polarization discovered by BICEP2. arXiv:1403.4132 [hepph]

  32. Hamada Y, Kawai H, Oda K Y, et al. Higgs inflation still alive. arXiv:1403.5043 [hep-ph]

  33. Freese K, Kinney W H. Natural inflation: Consistency with cosmic microwave background observations of Planck and BICEP2. arXiv:1403.5277 [astro-ph.CO]

  34. Gong Y G. Gao Q. The challenge for single field inflation with BICEP2 result. arXiv:1403.5716 [gr-qc]

  35. Okada N, Senoguz V N, Shafi Q. Simple inflationary models in light of BICEP2: An update. arXiv:1403.6403 [hep-ph]

  36. Bamba K, Myrzakulov R, Odintsov S D, et al. Trace-anomaly driven inflation in modified gravity and the BICEP2 result. arXiv:1403.6649 [hep-th]

  37. Lyth D H. BICEP2, the curvature perturbation and supersymmetry. arXiv:1403.7323 [hep-ph]

  38. Di Bari P, King S F, Luhn C, et al. Radiative inflation and dark energy RIDEs again after BICEP2. arXiv:1404.0009 [hep-ph]

  39. Feng C J, Li X Z, Liu D J. Note on power-law inflation in noncommutative space-time. arXiv:1404.0168 [astro-ph.CO]

  40. Chung Y C, Lin C. Topological inflation with large tensor-to-scalar ratio. arXiv:1404.1680 [astro-ph.CO]

  41. Huang Q G, Li M. CMB power spectrum from noncommutative spacetime. J High Energy Phys, 2003, 0306: 014

    Article  ADS  Google Scholar 

  42. Huang Q G, Li M. Noncommutative inflation and the CMB multipoles. J Cosmol Astropart Phys, 2003, 0311: 001

    Article  ADS  Google Scholar 

  43. Huang Q G, Li M. Power spectra in spacetime noncommutative inflation. Nucl Phys B, 2005, 713: 219–234

    Article  ADS  Google Scholar 

  44. Kobayashi T, Takahashi F. Running spectral index from inflation with modulations. J Cosmol Astropart Phys, 2011, 1101: 026

    Article  ADS  Google Scholar 

  45. Czerny M, Kobayashi T, Takahashi F. Running spectral index from large-field inflation with modulations revisited. arXiv:1403.4589 [astro-ph.CO]

  46. Czerny M, Higaki T, Takahashi F. Multi-natural inflation in supergravity and BICEP2. arXiv:1403.5883 [hep-ph]

  47. Cheng C, Huang Q G. Constraint on inflation model from BICEP2 and WMAP 9-year data. arXiv:1404.1230 [astro-ph.CO]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingGuo Huang.

Additional information

Recommended by LI Miao (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Huang, Q. & Zhao, W. Constraints on the extensions to the base ΛCDM model from BICEP2, Planck and WMAP. Sci. China Phys. Mech. Astron. 57, 1460–1465 (2014). https://doi.org/10.1007/s11433-014-5514-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5514-1

Keywords

Navigation