Skip to main content
Log in

Shaping super-Gaussian beam through digital micro-mirror device

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We have set up a novel system for shaping the Gaussian laser beams into super-Gaussian beams. The digital micro-mirror device (DMD) is able to modulate the laser light spatially through binary-amplitude modulation mechanism. With DMD, the irradiance of the laser beam can be redistributed flexibly and various beams with different intensity distribution can be produced. A super-Gaussian beam has been successfully shaped from the Gaussian beam with the use of DMD. This technique will be widely applied in lithography, quantum emulation and holographic optical tweezers which require precise control of beam profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers. Opt Commun, 2002, 207: 169–175

    Article  ADS  Google Scholar 

  2. Grier D G. A revolution in optical manipulation. Nature, 2003, 424: 810–816

    Article  ADS  Google Scholar 

  3. Dao L V, Teichmann S, Chen B, et al. Extreme ultraviolet radiation for coherent diffractive imaging with high spatial resolution. Sci China-Phys Mech Astron, 2010, 53(6): 1065–1067

    Article  ADS  Google Scholar 

  4. Dou J, Ren D, Zhu Y, et al. Focal plane wave-front sensing algorithm for high-contrast imaging. Sci China Ser G-Phys Mech Astron, 2009, 52(8): 1284–1288

    Article  ADS  Google Scholar 

  5. Wang H, Shi L, Lukyanchuk B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat Photon, 2008, 2(8): 501–505

    Article  Google Scholar 

  6. Sirinakis G, Ren Y X, Gao Y, et al. Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy. Rev Sci Instrum, 2012, 83: 093708

    Article  ADS  Google Scholar 

  7. Liu T, Tan J, Liu J, et al. Modulation of a super-Gaussian optical needle with high-NA Fresnel zone plate. Opt Lett, 2013, 38(15): 2742–2745

    Article  ADS  Google Scholar 

  8. Dickey F M, Weichman L S, Shagam R N. Laser beam shaping techniques. Int Soc Opt Photon, 2000, 8: 338–348

    Google Scholar 

  9. Dickey F M. Laser beam shaping. Opt Photon News, 2003, 14(4): 30–35

    Article  ADS  Google Scholar 

  10. Dickey F M, Holswade S C. Laser Beam Shaping: Theory and Techniques. New York: Marcel Dekker Inc., 2000

    Book  Google Scholar 

  11. Hoffnagle J A, Jefferson C M. Design and performance of a refractive optical system that converts a Gaussian to a flattop beam. Appl Opt, 2000, 39(30): 5488–5499

    Article  ADS  Google Scholar 

  12. Ngcobo S, Ait-Ameur K, Litvin I, et al. Tuneable Gaussian to flat-top resonator by amplitude beam shaping. Opt Express, 2013, 21(18): 21113–21118

    Article  ADS  Google Scholar 

  13. Ngcobo S, Litvin I, Burger L, et al. A digital laser for on-demand laser modes. Nat Commun, 2013, 4: 2289

    Article  ADS  Google Scholar 

  14. Dorrer C, Zuegel J D. Design and analysis of binary beam shapers using error diffusion. J Opt Soc Am B, 2007, 24(6): 1268–1275

    Article  ADS  Google Scholar 

  15. Liang J. Homogeneous one-dimensional optical lattice generation using a digital micromirror device-based high-precision beam shaper. J Micro-Nanolithogr MEMS MOEMS, 2012, 11(2): 023002

    Article  Google Scholar 

  16. Hornbeck L J. Current status and future applications for DMD-based projection displays (invited paper). In: Proceedings of the Fifth International Display Workshop IDW’98. Kobe, Japan, 1998. 713–716

    Google Scholar 

  17. Hornbeck L J. From cathode rays to digital micromirrors-A history of electronic projection display technology. Texas Instrum Tech J, 1998, 15(3): 7–46

    Google Scholar 

  18. Van-Kessel P F, Hornbeck L J, Meier R E, et al. A MEMS-based projection display. Proc IEEE, 1998, 86(8): 1687–1704

    Article  Google Scholar 

  19. Bansal V, Saggau P. Digital micromirror devices: Principles and applications in imaging. Cold Spring Harbor Protoc, 2013, 2013(5): 404–411

    Article  Google Scholar 

  20. Sun P, Liu D, Zhang Y, et al. Evolution of low-frequency noise passing through a spatial filter in a high power laser system. Sci China-Phys Mech Astron, 2011, 54(3): 411–415

    Article  ADS  Google Scholar 

  21. Ren Y X, Li M, Huang K, et al. Experimental generation of Laguerre-Gaussian beam using digital micromirror device. Appl Opt, 2010, 49(10): 1838–1844

    Article  Google Scholar 

  22. Lerner V, Shwa D, Drori Y, et al. Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device. Opt Lett, 2012, 37(23): 4826–4828

    Article  ADS  Google Scholar 

  23. Ren Y X, Wu J G, Zhou X W, et al. Experimental generation of Laguerre-Gaussian beam using angular diffraction of binary phase plate (in Chinese). Acta Phys Sin, 2010, 59(6): 3930–3935

    Google Scholar 

  24. Zhu P, Fajardo O, Shum J, et al. High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device. Nat Protoc, 2012, 7(7): 1410–1425

    Article  Google Scholar 

  25. Mercier B, Rousseau J P, Jullien A, et al. Nonlinear beam shaper for femtosecond laser pulses, from Gaussian to flat-top profile. Opt Commun, 2010, 283(14): 2900–2907

    Article  ADS  Google Scholar 

  26. Adeyemi A A, Barakat N, Darcie T E. Applications of digital micro-mirror devices to digital optical microscope dynamic range enhancement. Opt Express, 2009, 17(3): 1831–1843

    Article  ADS  Google Scholar 

  27. Kennedy S A, Szabo M J, Teslow H, et al. Creation of Laguerre-Gaussian laser modes using diffractive optics. Phys Rev A, 2002, 66(4): 043801

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YuXuan Ren or RongDe Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Ren, Y. & Lu, R. Shaping super-Gaussian beam through digital micro-mirror device. Sci. China Phys. Mech. Astron. 58, 1–6 (2015). https://doi.org/10.1007/s11433-014-5499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5499-9

Keywords

Navigation