Skip to main content
Log in

Polarization of plane wave propagating inside elastic hexagonal system solids

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Based on the reported physical parameters for hexagonal system solids, we have calculated the effects of anisotropy on polarization of plane P-wave propagation. Herein we report the results of calculations and the newly observed physical phenomena. It is found that, for a given propagation, if the polarization is parallel to the wave vector, so also to the Poynting vector. In such a case, the phase velocity is identical to the energy velocity; the quasi P-wave degenerates to a pure P-wave along the propagation. It is also noted that if the polarization is parallel to the Poynting vector but not to the wave vector, the propagating wave cannot be a pure P-wave. Furthermore, the polarization in a quasi P-wave may deviate from the wave vector for more than 45°, but the deviation from the Poynting vector is always less than 45°. The energy velocity of a quasi SV-wave can be larger than that of the quasi P-wave in some propagation directions, even though the phase velocity of a quasi SV-wave may never be larger than either the phase velocity or energy velocity of the quasi P-wave. Finally, in case of parameters ɛ=0 and δ*≠0, the polarization of a quasi P-wave has an observed symmetry at a 45° phase angle. The anisotropy of a hexagonal system solid determines if a pure P-wave can be created and what the propagation direction is for a plane wave propagating inside such a hexagonal system solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Claerbout J F. Toward a unfied theory of reflector mapping. Geophysics, 1971, 36(3): 467–481

    Article  ADS  Google Scholar 

  2. Alford R M, Kelly K R, Boore M. Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics, 1974, 39(6): 834–842

    Article  ADS  Google Scholar 

  3. Stolt R H. Migration by Fourier transform. Geophysics, 1978, 43(1): 23–48

    Article  ADS  Google Scholar 

  4. Berkout A J, Van Wulfften P D W. Migration in terms of spatial deconvolution. Geophys Prospect, 1979, 27(1): 261–291

    Article  ADS  Google Scholar 

  5. Gazdag J. Wave equation migration with phase-shift method. Geophysics, 1978, 43(7): 1342–1351

    Article  ADS  Google Scholar 

  6. Gazdag J. Wave equation migration with the accurate space derivative method. Geophys Prospect, 1980, 28(1): 60–70

    Article  ADS  Google Scholar 

  7. Gazdag J. Modeling of the acoustic wave equation with transform method. Geophysics, 1981, 46(6): 854–859

    Article  ADS  Google Scholar 

  8. Gazdag J, Sguazzero P. Migration of seismic data by phase-shift plus interpolation. Geophysics, 1984, 49(2): 124–131

    Article  ADS  Google Scholar 

  9. Kosloff D, Baysal E. Forward modeling by a Fourier method. Geophysics, 1982, 47(10): 1402–1412

    Article  ADS  Google Scholar 

  10. Kosloff D, Baysal E. Migration with the full acoustic wave equation. Geophysics, 1983, 48(6): 677–687

    Article  ADS  Google Scholar 

  11. Kosloff R, Kosloff D. Absorbing boundaries for wave propagation problems. J Comput Phys, 1986, 63(2): 363–376

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Kosloff D, Kessler D. Accurate depth migration by a generalized phase-shift method. Geophysics, 1987, 52(8): 1074–1084

    Article  ADS  Google Scholar 

  13. Pai D M. A new solution method for the wave equation in inhomogeneous-media. Geophysics, 1985, 50(10): 1541–1547

    Article  ADS  Google Scholar 

  14. Pai D M. Generalized f-k (frequency-wavenumber) migration in arbitrary varying media. Geophysics, 1988, 53(12): 1547–1555

    Article  ADS  MathSciNet  Google Scholar 

  15. Bleistein N. On the imaging of reflectors in the earth. Geophysics, 1987, 52(7): 931–942

    Article  ADS  Google Scholar 

  16. Bleistein N, Cohen J K, Stockwell J W. Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion. Berlin Heidelberg: Springer-Verlag, 2001

    Book  MATH  Google Scholar 

  17. Reshef M, Kessler D. Practical implementation of three-dimensional post-stack depth migration. Geophysics, 1989, 54(3): 309–318

    Article  ADS  Google Scholar 

  18. Wapenaar C P A. Representation of seismic sources in the one-way wave equations. Geophysics, 1990, 55(6): 786–790

    Article  ADS  Google Scholar 

  19. Grimbergen J LT, Dessing F J, Wapenaar K. Modal expansion of one-way operators in laterally varying media. Geophysics, 1998, 63(3): 95–1005

    Article  Google Scholar 

  20. Gray S H, Etgen J, Dillinger J, et al. Seismic migration problems and solutions. Geophysics, 2001, 66(5): 1622–1640

    Article  ADS  Google Scholar 

  21. Carcione J M, Herman G C, Kroode A P E T. Seismic modeling, Geophysics, 2002, 67(4): 1304–1325

    Article  ADS  Google Scholar 

  22. Etgen J T, O’Brien M J. Computational methods for large-scale 3D acoustic finite-difference modeling, a tutorial. Geophysics, 2007, 72(5): SM223–SM230

    Article  ADS  Google Scholar 

  23. Castagna J P, Backus M M. Offset-Dependent Reflectivity: Theory and Practice of AVO Analysis. Tulsa: SEG, 1993

    Book  Google Scholar 

  24. Fa L, Xie W, Tian Y, et al. Effect of both electric-acoustic and acoustic-electric conversions of transducer on acoustic-logging signal. Chin Sci Bull, 57(11): 1246–1260

  25. Maji K, Gao F, Abeykoon S K, et al. New full-wave phase-shift approach to solve the Helmholtz acoustic wave equation for modeling. Geophysics, 2012, 77(1): T11–T27

    Article  ADS  Google Scholar 

  26. Crampin S, Stephen R A, McGonigle R. The polarization of P-waves in anisotropic media. Geophys J Int, 1982, 68(2): 477–485

    Article  ADS  Google Scholar 

  27. Tsvankin I D, Chesnokov E M. Synthetic of body waves seismograms from point sources in anisotropic media. J Geophys Res, 1990, 95(B7): 11.317–11.331

    Article  ADS  Google Scholar 

  28. Carcione J M. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media. Amsterdam, Holand: Elsevier, 2001

    Google Scholar 

  29. Ĉervenŷ V. Seismic Ray Theory. Cambridge: Cambridge University Press, 2001

    MATH  Google Scholar 

  30. Tsvankin I. Seismic Signature and Analysis of Reflection Data in Anisotropic Media. Amsterdan, Holand: Elsevier, 2005

    Google Scholar 

  31. Backus G L. Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res, 1962, 67(11): 4427–4440

    Article  ADS  Google Scholar 

  32. Auld B A. Acoustic Fields and Waves in Solids. New York: Wiley, 1972

    Google Scholar 

  33. Rüger A. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics, 1997, 62(3): 713–722

    Article  ADS  Google Scholar 

  34. Thomsen L. Weak elastic anisotropy. Geophysics, 1986, 51(10): 1954–1966

    Article  ADS  Google Scholar 

  35. Vernik L, Nur A. Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics, 1992, 57(5): 727–735

    Article  ADS  Google Scholar 

  36. Wang Z. Seismic anisotropy in sedimentary rocks, part 2: Laboratory data. Geophysics, 2002, 67(5): 1423–1440

    Article  ADS  Google Scholar 

  37. Hosten B. Reflection and transmission of acoustic plane waves on an immersed orthotropic and viscoelastic solid layer. J Acoust Soc Am, 1991, 89(6): 2745–2753

    Article  ADS  Google Scholar 

  38. Lanceleur P, Ribeiro H, Belleval J D. The use of inhomogenous waves in the reflection-transmission problem at a plane interface between two anisotropic media. J Acoust Soc Am, 1993, 93(4): 1882–1892

    Article  ADS  Google Scholar 

  39. Helbig K, Schoenberg M. Anomalous polarization of elastic waves in transversely isotropic media. J Acoust Soc Am, 1987, 81(5): 1235–1245

    Article  ADS  Google Scholar 

  40. Daley P F, Hron F. Reflection and transmission coefficients for seismic waves in ellipsoidally isotropic media. Geophysics, 1979, 44(1): 27–38

    Article  ADS  Google Scholar 

  41. Fa L, Brown R L, Castagna J P. Anomalous post-critical refraction behavior for certain transversely isotropic media. J Acoust Soc Am, 2006, 120(6): 3479–3492

    Article  ADS  Google Scholar 

  42. Fa L, Castagna J P, Dong H. An accurately fast algorithm of calculating reflection/transmission coefficients. Sci China Ser G-Phys Mech Astron, 2008, 51(7): 823–846

    Article  ADS  Google Scholar 

  43. Bayuk I O, Ammerman M, Chesnokov E V. Upscaling of elastic properties of anisotropic sedmentary rocks. Geophys J Int, 2008, 172(2): 842–860

    Article  ADS  Google Scholar 

  44. Fa L, Castagna J P, Zeng Z, et al. Effects of anisotropy on time-depth relation in transversely isotropic medium with a vertical axis of symmetry. Chin Sci Bull, 2010, 55(21): 2243–2251

    Article  Google Scholar 

  45. Zhao Y, Zhao F, Fa L, et al. Seismic signal and data analysis of rock media with vertical anisotropy. J Mod Phys, 2013, 4: 11–18

    Article  Google Scholar 

  46. Wang W, Wang C, Long G. Doubling the capacity of quantum key distribution by using both polarization and differential phase shift. Int J Quantum Inf, 2009, 7(2): 529–537

    Article  MATH  Google Scholar 

  47. Fa L, Shen N, Zhang Y, et al. Electromagnetic Fields and Waves. Beijing: Posts & Telecom Press, 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Fa or MeiShan Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fa, L., Zhao, M., Liu, Y. et al. Polarization of plane wave propagating inside elastic hexagonal system solids. Sci. China Phys. Mech. Astron. 57, 251–262 (2014). https://doi.org/10.1007/s11433-013-5363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5363-3

Keywords

Navigation