Skip to main content
Log in

The effects of attached flexible tail length on the flow structure of an oscillating cylinder

  • Article
  • Special Topic: Fluid Mechanics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Particle Imaging Velocimetry (PIV) is utilized to investigate the flow structures of an oscillating cylinder attached to a flexible tail. At the same oscillation frequency and amplitude, the mean streamwise velocity along the wake central-line and the mean vertical velocity around the trailing edge of the flexible tail can be greatly increased with the tail length. Meanwhile, the longer the flexible tail is, the larger its deformation is. In order to study the influence of flexible tail length on the wake pattern of the experimental model, the relationships between the swirling strength Λci of vortex structure near the tail end and the velocity of tail trailing edge have been revealed. Moreover, the convection tracks and the Λci of vortex cores for different flexible tails are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferguson M, Parkinson G V. Surface and wake flow phenomena of the vortex-excited oscillation of the circular cylinder. J Eng Ind-Trans ASME, 1967, 89: 831–838

    Article  Google Scholar 

  2. Sarpkaya T. Vortex induced oscillations: A selective review. J Appl Mech-Trans ASME, 1979, 46: 241–258

    Article  Google Scholar 

  3. Bearman P W. Vortex shedding from oscillating bluff bodies. Ann Rev Fluid Mech, 1984, 16: 195–222

    Article  ADS  Google Scholar 

  4. Rockwell D. Active control of globally-unstable separated flows. In: International Symposium on Nonsteady Fluid Dynamics. New York: ASME, 1990. 92: 379–394

    Google Scholar 

  5. Griffin O M, Hall M S. Review—vortex shedding locked-on and flow control in bluff body wakes. J Fluids Eng-Trans ASME, 1991, 113: 526–537

    Article  Google Scholar 

  6. Griffin O M, Hall M S. Vortex shedding lock-on in a circular cylinder wake. In: Proceedings of 6th International Conference on Flow-Induced Vibrations. Rotterdam: Balkema Press, 1995. 3–14

    Google Scholar 

  7. Hall M S, Griffin O M. Vortex shedding and lock-on in a perturbed flow. J Fluids Eng-Trans ASME, 1993, 115: 283–291

    Article  Google Scholar 

  8. Bishop R E D, Hassan A Y. The lift and drag forces on a circular cylinder in a flowing fluid. Proc R Soc Lond, 1963, A277: 32–50

    ADS  Google Scholar 

  9. Gopalkrishnan R. Vortex induced forces on oscillating bluff cylinders. Dissertation for the Doctoral Degree. Cambridge, MA: Massachusetts Institute of Technology, 1993

    Google Scholar 

  10. Sarpkaya T. Hydrodynamic damping, flow-induced oscillations, and biharmonic response. J Offshore Mech Arct Eng Trans ASME, 1995, 177: 232–238

    Article  Google Scholar 

  11. Carberry J, Sheridan J, Rockwell D. Forces and wake modes of an oscillating cylinder. J Fluids Struct, 2001, 15: 523–532

    Article  Google Scholar 

  12. Williamson C H K, Roshko A. Vortex formation in the wake of an oscillating cylinder. J Fluids Struct, 1988, 2: 355–381

    Article  Google Scholar 

  13. Govardhan R, Williamson C H K. Modes of vortex formation and frequency response of a freely vibrating cylinder. J Fluid Mech, 2000, 420: 85–130

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Carberry J, Sheridan J, Rockwell D. Controlled oscillations of a cylinder: Forces and wake modes. J Fluid Mech, 2005, 538: 31–69

    Article  ADS  MATH  Google Scholar 

  15. Roshko A. On the Development of Turbulent Wakes from Vortex Streets. NACA TN 2913, 1953

  16. Roshko A. On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies. NACA TN 3169, 1954

  17. Gerrard J H. The mechanics of the formation region of vortices behind bluff bodies. J Fluid Mech, 1966, 25: 401–413

    Article  ADS  Google Scholar 

  18. Apelt C J, West G S, Szewczyk A A. The effects of wake splitter plates on the flow past a circular cylinder in the range 104<Re<5×104. Part 1. J Fluid Mech, 1973, 61: 187–198

    Article  ADS  Google Scholar 

  19. Apelt C J, West G S. The effects of wake splitter plates on the flow past a circular cylinder in the range 104<Re< 5×104. Part 2. J Fluid Mech, 1975, 71: 145–160

    Article  ADS  Google Scholar 

  20. Argentina M, Mahadevan L. Fluid-flow-induced flutter of a flag. Proc Natl Acad Sci USA, 2005, 102: 1829–1834

    Article  ADS  Google Scholar 

  21. Connell B S H, Yue D K P. Flapping dynamics of a flag in a uniform stream. J Fluid Mech, 2007, 581: 33–67

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Manela A, Howe M S. The forced motion of a flag. J Fluid Mech, 2009, 635: 439–454

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Hu Y, Wang J J. Vortex structures on the oscillating cylinder with a flexible film. In: National Conference on Experimental Mechanics, Kunming, 2012

  24. Heathcote S, Gursul I. Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA J, 2007, 45(5): 1066–1079

    Article  ADS  Google Scholar 

  25. Murray M M. Hydroelasticity modeling of flexible propulsors. Dissertation for the Doctoral Degree. Durham, NC: Duke University, 2000

    Google Scholar 

  26. Kang C K, Aono H, Cesnik C E S, et al. Effects of flexibility on the aerodynamic performance of flapping wings. J Fluid Mech, 2011, 689: 1–43

    Article  MathSciNet  Google Scholar 

  27. Feng L H, Wang J J. Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. J Fluid Mech, 2010, 662: 232–259

    Article  MATH  Google Scholar 

  28. Pan C, Wang J J, Zhang C. Identification of Lagrangian coherent structures in the turbulent boundary layer. Sci China Ser G-Phys Mech Astron, 2009, 52: 248–257

    Article  ADS  Google Scholar 

  29. Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech, 1999, 387: 353–396

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Pan C, Wang J J, He G S. Experimental investigation of wake-induced bypass transition control by surface roughness. Chin Phys Lett, 2012, 29: 104704

    Article  ADS  Google Scholar 

  31. von Kármán T, Burgers J M. General aerodynamics theory—perfect fluids. In: Durand W F, ed. Aerodynamic Theory II. New York: Dover Publications, 1963

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinJun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Wang, J. The effects of attached flexible tail length on the flow structure of an oscillating cylinder. Sci. China Phys. Mech. Astron. 56, 340–352 (2013). https://doi.org/10.1007/s11433-013-5014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5014-8

Keywords

Navigation