Skip to main content
Log in

Multiferroics and magnetoelectric effects in charge ordered compounds

  • Review
  • Progress of Projects Supported by NSFC · Spintronics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The coexistence of magnetic ordering and ferroelectricity, known as multiferroics, has drawn a lot of research effort. Depending on the origin of ferroelectricity, multiferroic materials can be classified into different groups. In this paper, we review recent progress in the field of multiferroics induced by different forms of charge ordering. In addition to a general description of charge order and electronic ferroelectricity, we focus on two specific systems: (1) charge order with frustration in RFe2O4 (R=Lu, Yb) system; (2) charge ordered perovskite manganites of the type (R1−x Ca x )MnO3 (R=La, Pr). The charge ordering can be tuned by external electric fields, which results in pronounced magnetoelectric effects and strong dielectric tunability. Other materials and possible candidates with charge order induced multiferroics are also briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schimd H. Multi-ferroic magnetoelectrics. Ferroelectrics, 1994, 162: 317–338

    Article  Google Scholar 

  2. Manfred F. Revival of the magnetoelectric effect. J Phys D-Appl Phys, 2005, 38: R123–152

    Article  Google Scholar 

  3. Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials. Nature, 2006, 442: 759–765

    Article  ADS  Google Scholar 

  4. Ramesh R, Spaldin N A. Multiferroics: progress and prospects in thin films. Nat Mater, 2007, 6: 21–29

    Article  ADS  Google Scholar 

  5. Spaldin N A, Cheong S W, Ramesh R. Multiferroics: Past, present, and future. Phys Tod, 2010, 63: 38–43

    Article  Google Scholar 

  6. Tokura Y. Multiferroics—toward strong coupling between magnetization and polarization in a solid. J Magn Magn Mater, 2007, 310: 1145–1150

    Article  ADS  Google Scholar 

  7. Kimura T, Goto T, Shintani H, et al. Magnetic control of ferroelectric polarization. Nature, 2003, 426: 55–58

    Article  ADS  Google Scholar 

  8. Hur N, Park S, Sharma P A, et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature, 2004, 429: 392–395

    Article  ADS  Google Scholar 

  9. Kitagawa Y, Hiraoka Y, Honda T, et al. Low-field magnetoelectric effect at room temperature. Nat Mater, 2010, 9: 797–802

    Article  ADS  Google Scholar 

  10. Ueland B G, Lynn J W, Laver M, et al. Origin of electric-field-induced magnetization in multiferroic HoMnO3. Phys Rev Lett, 2010, 104: 147204

    Article  ADS  Google Scholar 

  11. Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299: 1719–1722

    Article  ADS  Google Scholar 

  12. Khomskii D. Classifying multiferroics: Mechanisms and effects. Physics, 2009, 2: 20

    Article  Google Scholar 

  13. Cohen R E. Origin of ferroelectricity in perovskite oxides. Nature, 1992, 358: 136–138

    Article  ADS  Google Scholar 

  14. King-Smith R D, Vanderbilt D. Theory of polarization of crystalline solids. Phys Rev B, 1993, 47: 1651–1654

    Article  ADS  Google Scholar 

  15. Resta R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev Modern Phys, 1994, 66: 899–915

    Article  ADS  Google Scholar 

  16. Portengen T, Östreich T, Sham L J. Theory of electronic ferroelectricity. Phys Rev B, 1996, 54: 17452–17463

    Article  ADS  Google Scholar 

  17. Ishihara S. Electronic Ferroelectricity and Frustration. J Phys Soc Jpn, 2010, 79: 011010

    Article  ADS  Google Scholar 

  18. Kimura T. Spiral magnets as magnetoelectrics. Annu Rev Mater Res, 2007, 37: 387–413

    Article  ADS  Google Scholar 

  19. Cheong S W, Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity. Nat Mater, 2007, 6: 13–20

    Article  ADS  Google Scholar 

  20. Coey M. Condensed-matter physics: Charge-ordering in oxides. Nature, 2004, 430: 155–157

    Article  ADS  Google Scholar 

  21. Yamada Y, Kitsuda K, Nohdo S, et al. Charge and spin ordering process in the mixed-valence system LuFe2O4: Charge ordering. Phys Rev B, 2000, 62: 12167

    Article  ADS  Google Scholar 

  22. Ikeda N, Ohsumi H, Ohwada K, et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature, 2005, 436: 1136–1138

    Article  ADS  Google Scholar 

  23. Nagano A, Naka M, Nasu J, et al. Electric polarization, magnetoelectric effect, and orbital state of a layered iron oxide with frustrated geometry. Phys Rev Lett, 2007, 99: 217202

    Article  ADS  Google Scholar 

  24. Zhang Y, Yang H X, Ma C, et al. Charge-stripe order in the electronic ferroelectric LuFe2O4. Phys Rev Lett, 2007, 98: 247602

    Article  ADS  Google Scholar 

  25. Angst M, Hermann R P, Christianson A D, et al. Charge order in LuFe2O4: Antiferroelectric ground state and coupling to magnetism. Phys Rev Lett, 2008, 101: 227601

    Article  ADS  Google Scholar 

  26. Christianson A D, Lumsden M D, Angst M, et al. Three-dimensional magnetic correlations in multiferroic LuFe2O4. Phys Rev Lett, 2008, 100: 107601

    Article  ADS  Google Scholar 

  27. Mulders A M, Lawrence S M, Staub U, et al. Direct observation of charge order and an orbital glass state in multiferroic LuFe2O4. Phys Rev Lett, 2009, 103: 077602

    Article  ADS  Google Scholar 

  28. Xu X S, Angst M, Brinzari T V, et al. Charge order, dynamics, and magnetostructural transition in multiferroic LuFe2O4. Phys Rev Lett, 2008, 101: 227602

    Article  ADS  Google Scholar 

  29. Naka M, Nagano A, Ishihara S. Magnetodielectric phenomena in a charge- and spin-frustrated system of layered iron oxide. Phys Rev B, 2008, 77: 224441

    Article  ADS  Google Scholar 

  30. Asamitsu A, Tomioka Y, Kuwahara H, et al. Current switching of resistive states in magnetoresistive manganites. Nature, 1997, 388: 50–52

    Article  ADS  Google Scholar 

  31. Lee S, Fursina A, Mayo J T, et al. Electrically driven phase transition in magnetite nanostructures. Nat Mater, 2008, 7: 130–133

    Article  ADS  Google Scholar 

  32. Kiryukhin V, Casa D, Hill J P, et al. An X-ray-induced insulator-metal transition in a magnetoresistive manganite. Nature, 1997, 386: 813–815

    Article  ADS  Google Scholar 

  33. Miyano K, Tanaka T, Tomioka Y, et al. Photoinduced insulator-to-metal transition in a perovskite manganite. Phys Rev Lett, 1997, 78: 4257–4260

    Article  ADS  Google Scholar 

  34. Matsubara M, Okimoto Y, Ogasawara T, et al. Photoinduced switching between charge and orbital ordered insulator and ferromagnetic metal in perovskite manganites. Phys Rev B, 2008, 77: 094410

    Article  ADS  Google Scholar 

  35. Dagotto E, Hotta T, Moreo A. Colossal magnetoresistant materials: The key role of phase separation. Phys Rep, 2001, 344: 1–153

    Article  ADS  Google Scholar 

  36. Li C H, Zhang X Q, Cheng Z H, et al. Electric field induced phase transition in charge-ordered LuFe2O4. Appl Phys Lett, 2008, 93: 152103

    Article  ADS  Google Scholar 

  37. Zeng L J, Yang H X, Zhang Y, et al. Nonlinear current-voltage behavior and electrically driven phase transition in charge-frustrated LuFe2O4. Europhys Lett, 2008, 84: 57011

    Article  ADS  Google Scholar 

  38. Shen X, Xu C H, Li C H, et al. Pressure effects on multiferroic LuFe2O4. Appl Phys Lett, 2010, 96: 102909

    Article  ADS  Google Scholar 

  39. Li C H, Liu Y, Wang F, et al. Photoinduced magnetization change in multiferroic YbFe2O4. Chin Phys Lett, 2009, 26: 127501

    Article  ADS  Google Scholar 

  40. Li C H, Zhang X Q, Cheng Z H, et al. Room temperature giant dielectric tunability effect in bulk LuFe2O4. Appl Phys Lett, 2008, 92: 182903

    Article  ADS  Google Scholar 

  41. Tagantsev A K, Sherman V O, Astafiev K F, et al. Ferroelectric materials for microwave tunable applications. J Electroceram, 2003, 11: 5–66

    Article  Google Scholar 

  42. Vendik O G, Hollmann E K, Kozyrev A B, et al. Ferroelectric tuning of planar and bulk microwave devices. J Superconduct, 1999, 12: 325–338

    Article  ADS  Google Scholar 

  43. Johnson K M. Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. J Appl Phys, 1962, 33: 2826–2831

    Article  ADS  Google Scholar 

  44. Eteira A, Sinclair D C, Reaney I M, et al. BaTiO3-based ceramics for tunable microwave applications. J Am Ceram Soc, 2004, 87: 1082–1087

    Article  Google Scholar 

  45. Liu Y, Li C H, Zhang X Q, et al. Influence of Mg doping on the giant dielectric tunability in LuFe2O4. J Appl Phys, 2008, 104: 104110

    Article  ADS  Google Scholar 

  46. Liu Y, Zou T, Wang F, et al. Percolative effects and giant dielectric tunability of BaTiO3-LuFe2O4 composites. Physica B, 2011, 406: 1263–1266

    Article  ADS  Google Scholar 

  47. Li C H, Wang F, Liu Y, et al. Electrical control of magnetization in charge-ordered multiferroic LuFe2O4. Phys Rev B, 2009, 79: 172412

    Article  MathSciNet  ADS  Google Scholar 

  48. Wang F, Li C H, Zou T, et al. Electrically driven magnetic relaxation in multiferroic LuFe2O4. J Phys-Condensed Matter, 2010, 22: 496001

    Article  Google Scholar 

  49. Yamanouchi M, Chiba D, Matsukura F, et al. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature, 2004, 428: 539–542

    Article  ADS  Google Scholar 

  50. Lottermoser T, Lonkai T, Amann U, et al. Magnetic phase control by an electric field. Nature, 2004, 430: 541–544

    Article  ADS  Google Scholar 

  51. Radaelli P G, Cox D E, Marezio M, et al. Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3. Phys Rev B, 1997, 55: 3015–3023

    Article  ADS  Google Scholar 

  52. Mori S, Chen C H, Cheong S W. Pairing of charge-ordered stripes in (La,Ca)MnO3. Nature, 1998, 392: 473–476

    Article  ADS  Google Scholar 

  53. Coey J M D, Viret M, Von Moln R S. Mixed-valence manganites. Adv Phys, 1999, 48: 167–293

    Article  ADS  Google Scholar 

  54. Nagaev E L. Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Phys Rep, 2001, 346: 388–531

    Article  ADS  Google Scholar 

  55. Loudon J C, Mathur N D, Midgley P A. Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3. Nature, 2002, 420: 797–800

    Article  ADS  Google Scholar 

  56. Milward G C, Calderon M J, Littlewood P B. Electronically soft phases in manganites. Nature, 2005, 433: 607–610

    Article  ADS  Google Scholar 

  57. Daoud-Aladine A, Rodr Guez-Carvajal J, Pinsard-Gaudart L, et al. Zener polaron ordering in half-doped manganites. Phys Rev Lett, 2002, 89: 097205

    Article  ADS  Google Scholar 

  58. Wu L, Klie R F, Zhu Y, et al. Experimental confirmation of Zenerpolaron-type charge and orbital ordering in Pr1−xCaxMnO3. Phys Rev B, 2007, 76: 174210

    Article  ADS  Google Scholar 

  59. Efremov D V, Van Den Brink J, Khomskii D I. Bondversus site-centred ordering and possible ferroelectricity in manganites. Nat Mater, 2004, 3(12): 853–856

    Article  ADS  Google Scholar 

  60. Jooss C, Wu L, Beetz T, et al. Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites. P Natl Acad Sci USA, 2007, 104: 13597–13602

    Article  ADS  Google Scholar 

  61. Lopes A M L, Ara Jo J P, Amaral V S, et al. New phase transition in the Pr1−xCaxMnO3 system: Evidence for electrical polarization in charge ordered manganites. Phys Rev Lett, 2008, 100: 155702

    Article  ADS  Google Scholar 

  62. Pissas M, Kallias G. Phase diagram of the La1−x CaxMnO3 compound (0.5<x<0.9). Phys Rev B, 2003, 68: 134414

    Article  ADS  Google Scholar 

  63. Patterson C H. Competing crystal structures in La0.5Ca0.5MnO3: Conventional charge order versus Zener polarons. Phys Rev B, 2005, 72: 085125

    Article  ADS  Google Scholar 

  64. Giovannetti G, Kumar S, Van Den Brink J, et al. Magnetically induced electronic ferroelectricity in half-doped manganites. Phys Rev Lett, 2009, 103: 037601

    Article  ADS  Google Scholar 

  65. Zou T, Wang F, Liu Y, et al. Multiferroicity and magnetoelectric coupling in half-doped manganite La0.5Ca0.5MnO3. Appl Phys Lett, 2010, 97: 092501

    Article  ADS  Google Scholar 

  66. Mahesh Kumar M, Srinivas A, Suryanarayana S, et al. An experimental setup for dynamic measurement of magnetoelectric effect. Bull Mater Sci, 1998, 21: 251–255

    Article  Google Scholar 

  67. Jeroen Van Den B, Daniel I K. Multiferroicity due to charge ordering. J Phys-Condensed Matter, 2008, 20: 434217

    Article  Google Scholar 

  68. Yamauchi K, Fukushima T, Picozzi S. Ferroelectricity in multiferroic magnetite Fe3O4 driven by noncentrosymmetric Fe2+/Fe3+ charge-ordering: First-principles study. Phys Rev B, 2009, 79: 212404

    Article  ADS  Google Scholar 

  69. Fukushima T, Yamauchi K, Picozzi S. Ab initio investigations of Fe2+/Fe3+ bond dimerization and ferroelectricity induced by intermediate site/bond-centered charge ordering in magnetite. J Phys Soc Jpn, 2011, 80: 014709

    Article  ADS  Google Scholar 

  70. Tokunaga Y, Lottermoser T, Lee Y, et al. Rotation of orbital stripes and the consequent charge-polarized state in bilayer manganites. Nat Mater, 2006, 5: 937–941

    Article  ADS  Google Scholar 

  71. Ghosh B, Bhattacharya D, Raychaudhuri A K, et al. Frequency dependence of dielectric anomaly around Neel temperature in bilayer manganite Pr(Sr0.1Ca0.9)2Mn2O7. J Appl Phys, 2009, 105: 123914

    Article  ADS  Google Scholar 

  72. Itoh H, Tokunaga Y, Kida N, et al. Charge-ordering-induced polar domains and domain walls in a bilayered manganite Pr(Sr0.15Ca0.85)2-Mn2O7. Appl Phys Lett, 2010, 96: 032902

    Article  ADS  Google Scholar 

  73. Alonso J A, Garca-Munoz J L, Fernandez-Diaz M T, et al. Charge disproportionation in RNiO3 perovskites: Simultaneous metal-insulator and structural transition in YNiO3. Phys Rev Lett, 1999, 82: 3871–3874

    Article  ADS  Google Scholar 

  74. Mizokawa T, Khomskii D I, Sawatzky G A. Spin and charge ordering in self-doped Mott insulators. Phys Rev B, 2000, 61: 11263–11266

    Article  ADS  Google Scholar 

  75. Monceau P, Nad F Y, Brazovskii S. Ferroelectric Mott-Hubbard phase of organic (TMTTF)2X conductors. Phys Rev Lett, 2001, 86: 4080–4083

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Yan, L. & Cong, J. Multiferroics and magnetoelectric effects in charge ordered compounds. Sci. China Phys. Mech. Astron. 56, 222–231 (2013). https://doi.org/10.1007/s11433-012-4965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4965-5

Keywords

Navigation