Skip to main content
Log in

Giant enhancement of magnetocaloric effect in metallic glass matrix composite

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstracts

The magnetocaloric effect (MCE) has made great success in very low temperature refrigeration, which is highly desirable for application to the extended higher temperature range. Here we report the giant enhancement of MCE in the metallic glass composite. The large magnetic refrigerant capacity (RC) up to 103 J·kg−1 is more than double the RC of the well-known crystalline magnetic refrigerant compound Gd5Si2Ge1.9Fe0.1 (357 J·kg−1) and MnFeP0.45As0.55 (390 J·kg−1)(containing either exorbitant-cost Ge or poisonous As). The full width at half maximum of the magnetic entropy change (ΔS m) peak almost spreads over the whole low-temperature range (from 303 to 30 K), which is five times wider than that of the Gd5Si2Ge1.9Fe0.1 and pure Gd. The maximum ΔSm approaches a nearly constant value in a wide temperature span over 100 K, and however, such a broad table-like region near room temperature has seldom been found in alloys and compounds. In combination with the intrinsic amorphous nature, the metallic glass composite may be potential for the ideal Ericsson-cycle magnetic refrigeration over a broad temperature range near room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat Mater, 2005, 4: 450–454

    Article  ADS  Google Scholar 

  2. Provenzano V, Shapiro A J, Shull R D. Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature, 2004, 429: 853–857

    Article  ADS  Google Scholar 

  3. Tegus O, Bruck E, Buschow K, et al. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature, 2002, 415: 150–152

    Article  ADS  Google Scholar 

  4. Pecharsky V K, Gscheidner K A Jr. The giant magnetocaloric effect in Gd5(Ge2Si2). Phys Rev Lett, 1997, 78: 4494–4497

    Article  ADS  Google Scholar 

  5. Korte B J, Pecharsky V K, Gschneidner K A Jr. The correlation of the magnetic properties and the magnetocaloric effect in (Gd1−x Erx)NiAl alloys. J Appl Phys, 1998, 84: 5677–5685

    Article  ADS  Google Scholar 

  6. Hashimoto T, Kuzuhara T, Matsumoto K, et al. A new method of producing the magnetic refrigerant suitable for the Ericsson magnetic refrigeration. IEEE Trans Mag, 1987, 23: 2847–2849

    Article  ADS  Google Scholar 

  7. Gomesa A M, Proveti J R, Takeuchi A Y, et al. La(Fe1−x Cox)11.44Al1.56: A composite system for Ericsson-cycle-based magnetic refrigerators. J Appl Phys, 2006, 99: 116107

    Article  ADS  Google Scholar 

  8. Luo Q, Zhao D Q, Pan M X, et al. Magnetocaloric effect of Ho-, Dy-, and Er-based bulk metallic glasses in helium and hydrogen liquefaction temperature range. Appl Phys Lett, 2007, 90: 211903

    Google Scholar 

  9. Hashimoto T, Kuzuhura T, Sahashi M, et al. New application of complex magnetic materials to the magnetic refrigerant in an Ericsson magnetic refrigerator. J Appl Phys, 1987, 62: 3873–3878

    Article  ADS  Google Scholar 

  10. Smaili A, Chahine R. Composite materials for Ericsson-like magnetic refrigeration cycle. J Appl Phys, 1997, 81: 824–829

    Article  ADS  Google Scholar 

  11. Shao Y Z, Zhang J X, et al. Magnetic entropy in nanocomposite binary gadolinium alloys. J Appl Phys, 1996, 80: 76–80

    Article  ADS  Google Scholar 

  12. Wang D H, Han Z D, Huang S L, et al. The low-field magnetic entropy change in melt-spun and annealed Gd ribbons. Physica B, 2004, 352: 185–189

    Article  ADS  Google Scholar 

  13. Hou X L. Research on magnetocaloric effect of GdAl alloy. Rare Metal Mater Engin, 2006, 35: 749–751

    Google Scholar 

  14. Zhang T B. The structure and magnetocaloric effect of rapidly quenched Gd5Si2Ge2 alloy with low-purity gadolinium. Mater Lett, 2007, 61: 440–443

    Article  Google Scholar 

  15. Luo Q, Zhao D Q, Pan M X, et al. Magnetocalroric effect in Gd-based bulk metallic glass. Appl Phys Lett, 2006, 89: 081914

    Article  ADS  Google Scholar 

  16. Kong H Z, Ding J, Dong Z J, et al. Observation of clusters in Re60Fe30Al10 alloys and the associated magnetic properties. J Phys D, 2002, 35: 423–429

    Article  Google Scholar 

  17. Wang W H. Correlations between elastic moduli and propertyes in bulk metallic glasses. J Appl Phys, 2006, 99: 093506

    Article  ADS  Google Scholar 

  18. Shen T D, Schwarz R B, Coulter J Y, et al. Magnetocaloric effect in bulk amorphous Pd40Ni22.5Fe17.5P20 alloy. J Appl Phys, 2002, 91: 5240–5245

    Article  ADS  Google Scholar 

  19. Yavari A R. The changing faces of disorder. Nat Mater, 2007, 6: 181–182

    Article  ADS  Google Scholar 

  20. Greer A L. Metallic glasses. Science, 1995, 267: 1947–1953

    Article  ADS  Google Scholar 

  21. Yano K, Akiyama Y, Tokumitsu K, et al. Magnetic moment and Curie temperature for amorphous Fe100−X GdX alloys. J Mag Mag Mater, 2000, 214: 217–224

    Article  ADS  Google Scholar 

  22. Chen D, Takeuchi A, Inoue A. Thermal stability and magnetic properties of Gd-Fe-Al bulk amorphous alloys. J Alloys Comp, 2007, 440: 199–203

    Article  Google Scholar 

  23. Yoshiike S, Adachi H, Ichinose H, et al. Structure of melt-quenched Pr-Fe alloys and analysis of the magnetization based on super-ferromagnetism. JIM, 1998, 39: 102–109

    Google Scholar 

  24. Xiong D K, Li D, Liu W, et al. Magnetocaloric effect of Gd(FexAl1−x )2 compounds. Physica B, 2005, 369: 273–277

    Article  ADS  Google Scholar 

  25. Singh N K, Suresh K G, Nirmala R, et al. Correlation between magnetism and magnetocaloric effect in the intermetallic compound DyNiAl. J Appl Phys, 2006, 99: 08K904

  26. Johnson F, Shull R D. Amorphous FeCoCrZrB ferromagnets for use as high-temperature magnetic refrigerants. J Appl Phys, 2006, 99: 08K909

  27. Kolat V S, Atalay S. Magnetocaloric behavior in Fe57Cr17Cu1Nb3Si13B9 soft magnetic alloys. Phys Stat Sol, 2004, 1: 3529–3532

    Article  Google Scholar 

  28. Fujieda S, Fujita A, Fukamichi K. Large magnetocaloric effect in La(FexSi1−x )13 itinerant-electron metamagnetic compounds. Appl Phys Lett, 2002, 81: 1276–1278

    Article  ADS  Google Scholar 

  29. Phan M H, Yu S C. Review of the magnetocaloric effect in manganite materials. J Mag Mag Mater, 2007, 308: 325–340

    Article  ADS  Google Scholar 

  30. Stadler S, Khan M, Mitchell J, et al. Magnetocaloric properties of Ni2Mn1−x CuxGa. Appl Phys Lett, 2006, 88: 192511

    Google Scholar 

  31. Provenzano V, Shapiro A J, Shull R D, et al. Peak magnetocaloric effects in Al-Gd-Fe alloys. J Appl Phys, 2004, 95: 6909–6911

    Article  ADS  Google Scholar 

  32. McMichael R D, Ritter J J, Shull R D. Enhanced magnetocaloric effect in Gd3Ga5−x FexO12. J Appl Phys, 1993, 73: 6946–6948

    Article  ADS  Google Scholar 

  33. Yan A, Müller K H, Schultz L, et al. Magnetic entropy change in melt-spun MnFePGe. J Appl Phys, 2006, 99: 08K903

  34. McMichael R D, Shull R D, Swartzendurber L J, et al. Magnetocaloric effect in superparamagnets. J Mag Mag Mater, 1992, 111: 29–33

    Article  ADS  Google Scholar 

  35. Nirmala R, Morozkin A V, Malik S K, et al. Magnetocaloric effect in the intermetallic compound Gd5Si2Sb2. Europhys Lett, 2005, 72: 652–657

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiHua Wang.

Additional information

Supported by the National Natural Science Foundation of China (grant Nos. 50621061 and 50731008) and the National Basic Research Program of China (973 Program) (Grant No. 2007CB613904)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Bai, H., Pan, M. et al. Giant enhancement of magnetocaloric effect in metallic glass matrix composite. Sci. China Ser. G-Phys. Mech. As 51, 337–348 (2008). https://doi.org/10.1007/s11433-008-0053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0053-2

Keywords

Navigation