Skip to main content
Log in

A dynamic games approach to H control design of DoS with application to longitudinal flight control

Delta 域 H-infinity 控制器设计及其在高超声速飞行器纵向模型中的应用: 一种动态博弈方法

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, a game theoretic approach to develop H control strategies for the Delta Operator System (DoS) is proposed. Two information patterns for the controller are considered and the conditions are presented in terms of iterative Riccati recursions. By using the delta operator, the calculation stiffness of the discrete system can be circumvented when the sampling frequency is extremely high. The proposed method is applied to the longitudinal flight control of the hypersonic flying vehicle and the effectiveness is verified by the experimental results.

摘要

本文提出了一种利用动态博弈在 delta 域设计 H-infinity 控制器的方法. 针对不同的信息集合, 作者提出了两种不同的 H-infinity 控制器并给出了求解控制器的黎卡提方程. 利用 delta 算子可以有效避免采样频率过高引起的病态问题. 文章所提方法被应用于高超声速飞行器纵向模型的控制中并收到了较好的效果.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu B, Gao D X, Wang S X. Adaptive neural control based on HGO for hypersonic flight vehicles. Sci China Inf Sci, 2011, 54: 511–520

    Article  MathSciNet  MATH  Google Scholar 

  2. Xu B, Shi Z K, Yang C G, et al. Neural hypersonic flight control via time-scale decomposition with throttle setting constraint. Nonlinear Dyn, 2013, 73: 1849–1861

    Article  MathSciNet  MATH  Google Scholar 

  3. Xu B, Wang S X, Gao D X, et al. Command filter based robust nonlinear control of hypersonic aircraft with magnitude constraints on states and actuators. J Intell Robot Syst, 2014, 73: 233–247

    Article  Google Scholar 

  4. Xia Y Q, Fu M Y. Compound Control Methodology for Flight Vehicles. Berlin: Springer, 2013

    Book  MATH  Google Scholar 

  5. Xu B, Shi Z K. An overview on flight dynamics and control approaches for hypersonic vehicles. Sci China Inf Sci, 2015, 58: 070201

    MathSciNet  Google Scholar 

  6. Xu B. Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. Nonlinear Dyn, 2015, 80: 1509–1520

    Article  Google Scholar 

  7. Xu B, Huang X Y, Wang D W, et al. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian J Control, 2014, 16: 162–174

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang C D, Kung C C. Nonlinear H8 flight control of general six-degree-of-freedom motions. AIAA J Guid Control Dyn, 2000, 23: 278–288

    Article  Google Scholar 

  9. Hu S S, Chang B C, Yeh H H, et al. Robust nonlinear controller design for a longitudinal flight control problem. Asian J Control, 2000, 2: 111–121

    Article  Google Scholar 

  10. Wilcox Z D, MacKunis W, Bhat S, et al. Robust nonlinear control of a hypersonic aircraft in the presence of aerothermoelastic effects. In: Proceedings of American Control Conference, St. Louis, 2009. 2533–2538

    Google Scholar 

  11. Hu Y N, Yuan Y, Min H B, et al. Multi-objective robust control based on fuzzy singularly perturbed models for hypersonic vehicles. Sci China Inf Sci, 2011, 54: 563–576

    Article  MathSciNet  MATH  Google Scholar 

  12. Schoemig E, Szanier M, Ly U L. Mixed H2/H8 control of multimodel plants. AIAA J Guid Control Dyn, 1995, 18: 525–531

    Article  MATH  Google Scholar 

  13. Niewoehner R J, Kaminer I. Integrated aircraft-controller design using linear matrix inequalities. AIAA J Guid Control Dyn, 1996, 19: 445–452

    Article  Google Scholar 

  14. Li H Y, Si Y L, Wu L G, et al. Guaranteed cost control with poles assignment for a flexible air-breathing hypersonic vehicle. Int J Syst Sci, 2011, 42: 863–876

    Article  MathSciNet  MATH  Google Scholar 

  15. Liao F, Wang J L, Yang G H. Reliable robust flight tracking control: an LMI approach. IEEE Trans Contr Syst Technol, 2002, 10: 76–89

    Article  Google Scholar 

  16. Fujinaga J, Tokutake H, Sunada S. Development of small unmanned aerial vehicle and flight controller design. In: Proceedings of AIAA Atmospheric Flight Mechanics Conference and Exhibit, Hilton Head, 2007. 2007–6501

    Google Scholar 

  17. Boukhnifer M, Chaibet A, Larouci C. Experimental H8 robust control of aerial vehicle flight. In: Proceedings of 19th Mediterranean Conference on Control & Automation, Corfu, 2011. 242–247

    Google Scholar 

  18. Yang H J, Xia Y Q, Shi P, et al. Analysis and synthesis of delta operator systems. Berlin: Springer-Verlag, 2012. 1–18

    Google Scholar 

  19. Yang H J, Xia Y Q, Shi P. Observer-based sliding mode control for a class of discrete systems via delta operator approach. J Franklin Inst, 2010, 347: 1199–1213

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang H J, Xia Y Q, Shi P. Stabilization of networked control systems with nonuniform random sampling periods. Int J Robust Nonlinear Contr, 2011, 21: 501–526

    Article  MathSciNet  MATH  Google Scholar 

  21. Lee H J, Park J B, Joo Y H. Further refinement on LMI-based digital redesign: delta-operator approach. IEEE Trans Circuits Syst II, 2006, 53: 473–477

    Article  Google Scholar 

  22. Başar T, Bernhar P. H∞ Optimal Control and Related Minmax Design Problems. Berlin: Birkhauser-Verlag, 1995

    Google Scholar 

  23. Başar T. A dynamic games approach to controller design: disturbance rejection in discrete-time. IEEE Trans Automat Contr, 1991, 36: 936–952

    Article  MATH  Google Scholar 

  24. Korzhyk D, Conitzer V, Parr R. Complexity of computing optimal stackelberg strategies in security resource allocation games. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, Atlanta, 2010. 805–810

    Google Scholar 

  25. Irene M G, Rajiv S C, John D M, et al. Hypersonic vehicle model and control law development using H8 and µ synthesis. Hypersonic Vehicle Model. NASA Technical Report. 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y. A dynamic games approach to H control design of DoS with application to longitudinal flight control. Sci. China Inf. Sci. 58, 1–10 (2015). https://doi.org/10.1007/s11432-015-5379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5379-6

Keywords

关键词

Navigation