Skip to main content
Log in

Climate change response to astronomical forcing during the Oligocene-Miocene transition in the equatorial Atlantic (ODP Site 926)

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Oligocene-Miocene transition period was characterized by a decrease in global CO2 levels, expansion of polar ice sheet, fall in global sea-level, etc. However, the reasons for, and mechanisms of, this global, extreme-cold climate change event (Mi-1) still remain controversial. Our samples from the core of the Ocean Drilling Program (ODP) Leg 154, Site 926, located in the equatorial Atlantic, mainly consist of light-gray, nannofossil chalk with foraminifers interbedded with green-ish-gray, clayey, nannofossil chalk sediments. Color variation from light-gray layers (up to 80% carbonate content) to dark layers (∼60% carbonate content) was observed to occur cyclically at the meter scale. Therefore, we chose color reflectance lightness (L*) data as the paleoclimate proxy on which to perform cyclostratigraphic analysis because it could reflect carbonate content changes. Based on the recognition of the 405 kyr long eccentricity and ∼40 kyr obliquity cycles of the L* series, we tuned the series to establish an absolute astronomical time scale using the published age of the Oligocene-Miocene boundary (OMB) as the anchor for an absolute age control point. The power spectra of the tuned L* series showed that the long eccentricity signals became significantly weak, while the obliquity signals became strong, from the Late Oligocene to the Early Miocene. The 405 kyr long eccentricity minimum coincided with the 1.2 Myr obliquity node at the OMB, and similar convergences might be closely related to other extreme-cold events in Earth’s history. In addition, the sedimentation accumulation rate, oxygen isotopes of benthonic foraminifers, and rodents’ per-taxon turnover rate from Central Spain showed the same ∼2 Myr cyclicity, which indicates the significant influence of Earth-orbital forcing on the Earth system and ecological evolution on the million-year time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abels H A, Hilgen F J, Krijgsman W, Kruk R W, Raffi I, Turco E, Zachariasse W J. 2005. Long-period orbital control on middle Miocene global cooling: Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta. Paleoceanography, 20: PA4012

    Article  Google Scholar 

  • Akgün F, Kayseri M S, Akkiraz M S. 2007. Palaeoclimatic evolution and vegetational changes during the Late Oligocene-Miocene period in Western and Central Anatolia (Turkey). Paleogeogr Paleoclmatol Paleoecol, 253: 56–90

    Article  Google Scholar 

  • Balsam W L, Deaton B C, Damuth J E. 1998. The effects of water content on diffuse reflectance spectrophotometry studies of deep-sea sediment cores. Mar Geol, 149: 177–189

    Article  Google Scholar 

  • Balsam W L, Deaton B C, Damuth J E. 1999. Evaluating optical lightness as a proxy for carbonate content in marine sediment cores. Mar Geol, 161: 141–153

    Article  Google Scholar 

  • Barreda V, Palazzesi L. 2007. Patagonian vegetation turnovers during the Paleogene-early Neogene: Origin of arid-adapted floras. Bot Rev, 73: 31–50

    Article  Google Scholar 

  • Billups K, Channell J, Zachos J. 2002. Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic. Paleoceanography, 17: 4-1–4-11

  • Billups K, Pälike H, Channell J, Zachos J C, Shackleton N J. 2004. Astronomic calibration of the late Oligocene through early Miocene geomagnetic polarity time scale. Earth Planet Sci Lett, 224: 33–44

    Article  Google Scholar 

  • Bosmans J H C, Jfhout S S, Tuenter E, Hilgen F J, Lourens L J. 2014. Response of the north african summer monsoon to precession and obliquity forcings in the EC-Earth GCM. Clim Dyn, 44: 279–297

    Article  Google Scholar 

  • Cande S C, Kent D V. 1995. Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J Geophys Res, 100: 6093–6095

    Article  Google Scholar 

  • Cleveland W S. 1979. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc, 74: 829–836

    Article  Google Scholar 

  • Curry W B, Shackleton N J, Richter C, Backman J E, Bassinot F, Bickert T, Chaisson W P, Cullen J L, Demenocal P B, Dobson D M, Ewert L, Crützner J, Hagelberg T K, Hampt G, Harris S E, Herbert T D, Moran K, Murayama M, Murray D W, Pearson P N, Raffi I, Scheneider D A, Tiedemann R, Valet J P, Weedon G P, Yasuda H, Zachos J C. 1995. Initial Reports: Site 926. Proc Ocean Drill Prog, 154: 153–232

    Google Scholar 

  • Diester-Haass L, Billups K, Emeis K. 2011. Enhanced paleoproductivity across the Oligocene/Miocene boundary as evidenced by benthic foraminiferal accumulation rates. Paleogeogr Paleoclimatol Paleoecol, 302: 464–473

    Article  Google Scholar 

  • Dunai T J, López G A G, Juez-Larré J. 2005. Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosionsensitive landforms. Geology, 33: 321–324

    Article  Google Scholar 

  • Ghil M, Allen M R, Dettinger M D, Ide K, Kondrashov D, Mann M E, Robertson A W, Saunders A, Tian Y, Varadi F. 2002. Advanced spectral methods for climatic time series. Rev Geophys, 40: 3-1–3-41

  • Hilgen F J, Lourens L J, van Dam J A. 2012. Chapter 29: The Neogene Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2012. Oxford: Elsevier Science Ltd., 2: 923–978

    Article  Google Scholar 

  • Hinnov L A. 2004). Earth’s orbital parameters, cycyle stratigraphy. In: Gradstein F M, Ogg G, Smith A G, eds. A Geologic Time Scale 2004. Cambridge: Cambridge University Press. 55–62

    Google Scholar 

  • Hinnov L A, Hilgen F J. 2012). Chapter 4: Cyclostratigraphy and astrochronology. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2012. Oxford: Elsevier Science Ltd., 1: 63–83

    Chapter  Google Scholar 

  • Holbourn A, Kuhnt W, Clemens S, Prell W, Andersen N. 2013. Middle to late Miocene stepwise climate cooling: Evidence from a high-resolution deep water isotope curve spanning 8 million years. Paleoceanography, 28: 688–699

    Article  Google Scholar 

  • Holbourn A, Kuhnt W, Schulz M, Erlenkeuser H. 2005. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature, 438: 483–487

    Article  Google Scholar 

  • Huang C. 2014. The current status of cyclostratigraphy and astrochronology in the Mesozoic (in Chinese). Earth Sci Front, 21: 48–66

    Google Scholar 

  • Huang C, Hesselbo S P. 2014. Pacing of the Toarcian Oceanic Anoxic Event (Early Jurassic) from astronomical correlation of marine sections. Gondwana Res, 25: 1348–1356

    Article  Google Scholar 

  • Hyeong K, Lee J, Seo I, Lee M J, Yoo C M, Khim B-K. 2014. Southward shift of the Intertropical Convergence Zone due to Northern Hemisphere cooling at the Oligocene-Miocene boundary. Geology, 42: 667–670

    Article  Google Scholar 

  • Laskar J, Fienga A, Gastineau M, Manche H. 2011. La2010: A new orbital solution for the long-term motion of the Earth. Astron Astrophys, 532: A89

    Article  Google Scholar 

  • Laskar J, Joutel F, Boudin F. 1993. Orbital, precessional, and insolation quantities for the Earth from 20 Myr to +10 Myr. Astron Astrophys, 270: 522–533

    Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia A, Levrard B. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys, 428: 261–285

    Article  Google Scholar 

  • Milankovic M. 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Beograd: Königlich Serbische Akademie. 633

    Google Scholar 

  • Miller K G, Feigenson M D, Wright J D, Clement B M. 1991. Miocene isotope reference section, Deep Sea Drilling Project Site 608: An evaluation of isotope and biostratigraphic resolution. Paleoceanography, 6: 33–52

    Article  Google Scholar 

  • Miller K G, Kominz M A, Browning J V, Wright J D, Mountain G S, Katz M E, Sugarman P J, Cramer B S, Christie-Blick N, Pekar S F. 2005. The Phanerozoic record of global sea-level change. Science, 310: 1293–1298

    Article  Google Scholar 

  • Naish T R, Woolfe K J, Barrett P J, Wilson G S, Atkins C, Bohaty S M, Bücker C J, Claps M, Davey F J, Dunbar G B. 2001. Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature, 413: 719–723

    Article  Google Scholar 

  • Pälike H, Frazier J, Zachos J C. 2006. Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise. Quat Sci Rev, 25: 3138–3149

    Article  Google Scholar 

  • Pälike H, Laskar J, Shackleton N J. 2004. Geologic constraints on the chaotic diffusion of the solar system. Geology, 32: 929–932

    Article  Google Scholar 

  • Pagani M, Zachos J C, Freeman K H, Tipple B, Bohaty S. 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309: 600–603

    Article  Google Scholar 

  • Paillard D, Labeyrie L, Yiou P. 1996. Macintosh program performs time-series analysis. Eos, Trans Am Geophys Union, 77: 379–379

    Article  Google Scholar 

  • Pusz A E, Thunell R C, Miller K G. 2011. Deep water temperature, carbonate ion, and ice volume changes across the Eocene-Oligocene climate transition. Paleoceanography, 26: PA2205, doi: 10.1029/2010PA001950

    Article  Google Scholar 

  • Raffi I, Backman J, Fornaciari E, Pälike H, Rio D, Lourens L, Hilgen F. 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat Sci Rev, 25: 3113–3137

    Article  Google Scholar 

  • Rasmussen E S. 2004. The interplay between true eustatic sea-level changes, tectonics, and climatic changes: What is the dominating factor in sequence formation of the Upper Oligocene-Miocene succession in the eastern North Sea Basin, Denmark? Glob Planet Change, 41: 15–30

    Article  Google Scholar 

  • Raymo M, Ruddiman W F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117–122

    Article  Google Scholar 

  • Ruddiman W F. 2008). Earth’s Climate: Past and Future. 2nd ed. New York: W. H. Freeman and Company. 388

    Google Scholar 

  • Shackleton N, Crowhurst S, Weedon G, Laskar J. 1999. Astronomical calibration of Oligocene-Miocene time. Philos Trans R Soc A-Math Phys Eng Sci, 357: 1907–1929

    Article  Google Scholar 

  • Shackleton N J, Hall M A, Raffi I, Tauxe L, Zachos J. 2000. Astronomical calibration age for the Oligocene-Miocene boundary. Geology, 28: 447–450

    Article  Google Scholar 

  • Spezzaferri S. 1995. Planktonic foraminiferal paleoclimatic implications across the Oligocene-Miocene transition in the oceanic record (Atlantic, Indian and South Pacific). Paleogeogr Paleoclimatol Paleoecol, 114: 43–74

    Article  Google Scholar 

  • Strasser A, Hilgen F J, Heckel P H. 2006. Cyclostratigraphy concepts, definitions, and applications. Newsl Stratigr, 42: 75–114

    Article  Google Scholar 

  • Tian J. 2009. Climate Rhythm in Cenozoic: ODP Legs 320 and 321 from Eastern Equatorial Pacific (in Chinese). Adv Earth Sci, 24: 1357–1361

    Google Scholar 

  • Tian J, Zhao Q, Wang P, Li Q, Cheng X. 2008. Astronomically modulated Neogene sediment records from the South China Sea. Paleoceanography, 23: PA3210, doi: 10.1029/2007PA001552

    Article  Google Scholar 

  • Van Dam J A, Aziz H A, Sierra M Á Á, Hilgen F J, van den Hoek Ostende L W, Lourens L J, Mein P, van der Meulen A J, Pelaez-Campomanes P. 2006. Long-period astronomical forcing of mammal turnover. Nature, 443: 687–691

    Article  Google Scholar 

  • Wade B S, Pearson P N, Berggren W A, Pälike H. 2011. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Sci Rev, 104: 111–142

    Article  Google Scholar 

  • Wang P. 2006a. Sketching the Earth’s almanac (in Chinese). Chin J Nat, 28: 1–6

    Google Scholar 

  • Wang P. 2006b. Astronomical “Pendulum” for geological clock (in Chinese). Mar Geol Quat Geol, 26: 1–7

    Google Scholar 

  • Weedon G P, Shackleton N J, Pearson P N. 1997. The Oligocene time scale and cyclostratigraphy on the Ceara Rise, western equatorial Atlantic. Integr Ocean Drill Prog Prel Rep, 154: 101–114

    Google Scholar 

  • Wu H, Zhang S, Feng Q, Fang N, Yang T, Li H. 2011. Theoretical basis, research advancement and prospects of cyclostratigraphy (in Chinese). Earth Sci-J China Univ Geos, 36: 409–428

    Google Scholar 

  • Zachos J C, Flower B P, Paul H. 1997. Orbitally paced climate oscillations across the Oligocene/Miocene boundary. Nature, 388: 567–570

    Article  Google Scholar 

  • Zachos J C, Shackleton N J, Revenaugh J S, Pälike H, Flower B P. 2001a. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science, 292: 274–278

    Article  Google Scholar 

  • Zachos J C, Pagani M, Sloan L, Thomas E, Billups K. 2001b. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693

    Article  Google Scholar 

  • Zamelczyk K, Rasmussen T L, Husum K, Hald M. 2013. Marine calcium carbonate preservation vs. climate change over the last two millennia in the Fram Strait: Implications for planktic foraminiferal paleostudies. Mar Micropaleontol, 98: 14–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunJu Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., Huang, C., Li, M. et al. Climate change response to astronomical forcing during the Oligocene-Miocene transition in the equatorial Atlantic (ODP Site 926). Sci. China Earth Sci. 59, 1665–1673 (2016). https://doi.org/10.1007/s11430-016-5311-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5311-y

Keywords

Navigation