Skip to main content
Log in

Snowdrift effect on snow deposition: Insights from a comparison of a snow pit profile and meteorological observations in east Antarctica

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

A high-frequency and precise ultrasonic sounder was used to monitor precipitated/deposited and drift snow events over a 3-year period (17 January 2005 to 4 January 2008) at the Eagle automatic weather station site, inland Antarctica. Ion species and oxygen isotope ratios were also generated from a snow pit below the sensor. These accumulation and snowdrift events were used to examine the synchronism with seasonal variations of δ 18O and ion species, providing an opportunity to assess the snowdrift effect in typical Antarctic inland conditions. There were up to 1-year differences for this 3-year-long snow pit between the traditional dating method and ultrasonic records. This difference implies that in areas with low accumulation or high wind, the snowdrift effect can induce abnormal disturbances on snow deposition. The snowdrift effect should be seriously taken into account for high-resolution dating of ice cores and estimation of surface mass balance, especially when the morphology of most Antarctic inland areas is similar to that of the Eagle site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams H. 1996. The detection and analysis of a gravity wave observed over Casey in East Antarctica using radiosonde data. Aust Meteorol Mag, 45: 219–232

    Google Scholar 

  • Allison I, Wendler G, Radok U. 1993. Climatology of the East Antarctic ice sheet (100°E to 140°E) derived from automatic weather stations. J Geophys Res, 98: 8815–8823

    Article  Google Scholar 

  • Allison I. 1998. Surface climate of the interior of the Lambert Glacier basin, Antarctica, form automatic weather station data. Ann Glaciol, 27: 515–520

    Google Scholar 

  • Bintanja R. 1998a. The contribution of snowdrift sublimation to the surface mass balance of Antarctica. Ann Glaciol, 27: 251–259

    Google Scholar 

  • Bintanja R. 1998b. The interaction between drifting snow and atmospheric turbulence. Ann Glaciol, 26: 167–173

    Article  Google Scholar 

  • Bintanja R. 2001. Snowdrift sublimation in a katabatic wind region of the Antarctic Ice sheet. J Appl Meteorol, 40: 1952–1966

    Article  Google Scholar 

  • Bromwich D H. 1988. Snowfall in high southern latitudes. Rev Geophys, 26: 149–168

    Article  Google Scholar 

  • Curran M A J, van Ommen T D, Morgan V I, Phillips K L, Palmer A S. 2003. Ice core evidence for Antarctic sea ice decline since the 1950s. Science, 302: 1203–1206

    Article  Google Scholar 

  • Dansgaard W. 1964. Stable isotopes in precipitation. Tellus, 16: 436–468

    Article  Google Scholar 

  • DiMarzio J, Brenner A, Schutz R, Shuman C A, Zwally H J. 2007. GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica, Boulder, Colorado USA. National Snow and Ice Data Center, Digital media

    Google Scholar 

  • Ding M H, Xiao C D, Jin B, Ren J W, Qin D H, Sun W Z. 2010. Distribution of δ 18O in surface snow along a transect from Zhongshan Station to Dome A, East Antarctica. Chin Sci Bull, 55: 2709–2714

    Article  Google Scholar 

  • Ding M, Xiao C, Li Y, Ren J, Hou S, Jin B, Sun B. 2011. Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica. J Glaciol, 57: 658–666

    Article  Google Scholar 

  • Ding M H, Xiao C D, Li C J, Qin D H, Jin B, Shi G T, Xie A H, Cui X B. 2015. Surface mass balance and its climate significance from the coast to Dome A, East Antarctica. Sci China Earth Sci, 58: 1787–1797

    Article  Google Scholar 

  • Ding M, Xiao C, Yang Y, Wang Y, Li C, Yuan N, Shi G, Sun W, Ming J. 2016. Re-assessment of recent (2008–2013) surface mass balance over Dome Argus, Antarctica. Polar Res, 35: 26133

    Article  Google Scholar 

  • Eisen O, Frezzotti M, Genthon C, Isaksson E, Magand O, van den Broeke M R, Dixon D A, Ekaykin A, Holmlund P, Kameda T, Karlöf L, Kaspari S, Lipenkov V Y, Oerter H, Takahashi S, Vaughan D G. 2008. Groundbased measurements of spatial and temporal variability of snow accumulation in East Antarctica. Rev Geophys, 46: RG2001

    Article  Google Scholar 

  • EPICA Community Members. 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429: 623–628

    Article  Google Scholar 

  • Fierz C, Lehning M. 2001. Assessment of the microstructure-based snowcover model SNOWPACK: Thermal and mechanical properties. Cold Regions Sci Tech, 33: 123–131

    Article  Google Scholar 

  • Frezzotti M, Gandolfi S, Urbini S. 2002. Snow megadunes in Antarctica: Sedimentary structure and genesis. J Geophys Res, 107: 4344

    Article  Google Scholar 

  • Frezzotti M, Pourchet M, Flora O, Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi M, Traversi R, Udisti R, Fily M. 2004. New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Clim Dyn, 23: 803–813

    Article  Google Scholar 

  • Frezzotti M, Urbini S, Proposito M, Scarchilli C, Gandolfi S. 2007. Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J Geophys Res, 112: F02032

    Article  Google Scholar 

  • Fujita K, Abe O. 2006. Stable isotopes in daily precipitation at Dome Fuji, East Antarctica. Geophys Res Lett, 33: L18503

    Article  Google Scholar 

  • Furukawa T, Kamiyama K, Maeno H. 1996. Snow surface features along the traverse route from the coast to Dome Fuji station, Queen Maud Land, Antarctica. In: Proceedings of the NIPR Symposium on Polar Meteorology and Glaciology. 13–24

    Google Scholar 

  • Gallée H. 1998. Simulation of blowing snow over the Antarctic ice sheet. Ann Glaciol, 26: 203–205

    Article  Google Scholar 

  • Gallée H, Trouvilliez A, Agosta C, Genthon C, Favier V, Naaim-Bouvet F. 2013. Transport of snow by the wind: A comparison between observations in Adélie Land, Antarctica, and simulations made with the regional climate model MAR. Bound-Layer Meteorol, 146: 133–147

    Article  Google Scholar 

  • Goodwin I D. 1991. Snow-accumulation variability from seasonal surface observations and firn-core stratigraphy, eastern Wilkes Land, Antarctica. J Glaciol, 37: 383–387

    Article  Google Scholar 

  • Gow A J. 1969. On the rates of growth of grains and crystals in South Pole firn. J Glaciol, 8: 241–252

    Article  Google Scholar 

  • Groot Zwaaftink C D, Cagnati A, Crepaz A, Fierz C, Macelloni G, Valt M, Lehning M. 2013. Event-driven deposition of snow on the Antarctic Plateau: Analyzing field measurements with SNOWPACK. Cryosphere, 7: 333–347

    Article  Google Scholar 

  • Hezel P J, Alexander B, Bitz C M, Steig E J, Holmes C D, Yang X, Sciare J. 2011. Modeled methanesulfonic acid (MSA) deposition in Antarctica and its relationship to sea ice. J Geophys Res, 116: D23214

    Article  Google Scholar 

  • Jouzel J, Alley R B, Cuffey K M, Dansgaard W, Grootes P, Hoffmann G, Johnsen S J, Koster R D, Peel D, Shuman C A, Stievenard M, Stuiver M, White J. 1997. Validity of the temperature reconstruction from water isotopes in ice cores. J Geophys Res, 102: 26471–26487

    Article  Google Scholar 

  • Kameda T, Motoyama H, Fujita S, Takahashi S. 2008. Temporal and spatial variability of surface mass balance at Dome Fuji, East Antarctica, by the stake method from 1995 to 2006. J Glaciol, 54: 107–116

    Article  Google Scholar 

  • Krinner G, Magand O, Simmonds I, Genthon C, Dufresne J L. 2006. Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Clim Dyn, 28: 215–230

    Article  Google Scholar 

  • Legrand M, Mayewski P. 1997. Glaciochemistry of polar ice cores: A review. Rev Geophys, 35: 219–243

    Article  Google Scholar 

  • Lenaerts J T M, van den Broeke M R, Déry S J, König-Langlo G, Ettema J, Munneke P K. 2010. Modelling snowdrift sublimation on an Antarctic ice shelf. Cryosphere, 4: 179–190

    Article  Google Scholar 

  • Lenaerts J T M, van den Broeke M R. 2012. Modeling drifting snow in Antarctica with a regional climate model: 2. Results. J Geophys Res, 117: D05109

    Google Scholar 

  • Ma Y, Bian L, Xiao C, Allison I, Zhou X. 2010. Near surface climate of the traverse route from Zhongshan Station to Dome A, East Antarctica. Antarct Sci, 22: 443–459

    Article  Google Scholar 

  • Mann G W, Anderson P S, Mobbs S D. 2000. Profile measurements of blowing snow at Halley, Antarctica. J Geophys Res, 105: 24491–24508

    Article  Google Scholar 

  • McConnell J R, Bales R C, Davis D R. 1997. Recent intra-annual snow accumulation at South Pole: Implications for ice core interpretation. J Geophys Res, 102: 21947–21954

    Article  Google Scholar 

  • McMorrow A J, Curran M A J, Van Ommen T D, Morgan V I, Allison I. 2002. Features of meteorological events preserved in a high-resolution Law Dome (East Antarctica) snow pit. Ann Glaciol, 35: 463–470

    Article  Google Scholar 

  • McMorrow A, van Ommen T D, Morgan V, Curran M A J. 2004. Ultra-highresolution seasonality of trace-ion species and oxygen isotope ratios in Antarctic firn over four annual cycles. Ann Glaciol, 39: 34–40

    Article  Google Scholar 

  • Motoyama H, Furukawa T, Goto-Azuma K, Tanaka Y, Furusaki A, Igarashi M, Saito T, Kamiyama K. 2008. Glaciological data collected by the 45th, 46th and 47th Japanese Antarctic Research Expeditions during 2004–2007. JARE Data Rep, 34: 1–22

    Google Scholar 

  • Neem Community Members. 2013. Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 493: 489–494

    Article  Google Scholar 

  • Paterson W S B. 1994. The Physics of Glaciers. 3 rd ed. Oxford: Pergamon Press. 480

    Google Scholar 

  • Petit J R, Jouzel J, Pourchet M, Merlivat L. 1982. A detailed study of snow accumulation and stable isotope content in Dome C (Antarctica). J Geophys Res, 87: 4301–4308

    Article  Google Scholar 

  • Petit J R, Jouzel J, Raynaud D, Barkov N I, Barnola J M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov V M, Legrand M, Lipenkov V Y, Lorius C, PÉpin L, Ritz C, Saltzman E, Stievenard M. 1999. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica. Nature, 399: 429–436

    Article  Google Scholar 

  • Pomeroy J W, Jones H G. 1996. Wind-blown snow: Sublimation, transport and changes to polar snow. In: Wolff E W, Bales R C, eds. Chemical Exchange Between the Atmosphere and Polar Snow. NATO ASI Series, 143. Berlin & Heidelberg: Springer Verlag. 453–489

    Chapter  Google Scholar 

  • Qin D H. 2001. Antarctic Glaciology. Beijing: Science Press. 239

    Google Scholar 

  • Reijmer C H, van Den Broeke M R. 2003. Temporal and spatial variability of the surface mass balance in Dronning Maud Land, Antarctica, as derived from automatic weather stations. J Glaciol, 49: 512–520

    Article  Google Scholar 

  • Ren J. 1995. A traverse expedition to the Lambert glacier basin, Eastern Antarctica (in Chinese). J Glaciol Geocyol, 17: 303–307

    Google Scholar 

  • Ren J, Sun J, Qin D, Xiao C. 2004. A primary study on ionic concentrations in snow pits in the hinterland of East Antarctica. J Glaciol Geocyol, 26: 135–141

    Google Scholar 

  • Scambos T A, Frezzotti M, Haran T, Bohlander J, Lenaerts J T M, van den Broeke M R, Jezek K, Long D, Urbini S, Farness K, Neumann T, Albert M, Winther J G. 2012. Extent of low-accumulation ‘wind glaze’ areas on the East Antarctic plateau: Implications for continental ice mass balance. J Glaciol, 58: 633–647

    Article  Google Scholar 

  • Scarchilli C, Frezzotti M, Didonfrancesco G, Valt M, Urbini S, De Silvestri L, Dolci S, Iacarino A, Grigioni P. 2008. The impact of Precipitation and Sublimation processes on Snow Accumulation: Preliminary Results. Terra Antartica Reports, 14: 47–50

    Google Scholar 

  • Scarchilli C, Frezzotti M, Grigioni P, de Silvestri L, Agnoletto L, Dolci S. 2010. Extraordinary blowing snow transport events in East Antarctica. Clim Dyn, 34: 1195–1206

    Article  Google Scholar 

  • Scarchilli C, Frezzotti M, Ruti P M. 2011. Snow precipitation at four ice core sites in East Antarctica: Provenance, seasonality and blocking factors. Clim Dyn, 37: 2107–2125

    Article  Google Scholar 

  • Smith M C. 1995. The role of atmospheric processes in the Antarctic ice mass balance. Dissertation for Doctoral Degree. Leeds: University of Leeds. 220

    Google Scholar 

  • Steen-Larsen H C, Masson-Delmotte V, Sjolte J, Johnsen S J, Vinther B M, Bréon F M, Clausen H B, Dahl-Jensen D, Falourd S, Fettweis X, Gallée H, Jouzel J, Kageyama M, Lerche H, Minster B, Picard G, Punge H J, Risi C, Salas D, Schwander J, Steffen K, Sveinbjörnsdóttir A E, Svensson A, White J. 2011. Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. J Geophys Res, 116: D06108

    Article  Google Scholar 

  • Steen-Larsen H C, Johnsen S J, Masson-Delmotte V, Stenni B, Risi C, Sodemann H, Balslev-Clausen D, Blunier T, Dahl-Jensen D, Ellehøj M D, Falourd S, Grindsted A, Gkinis V, Jouzel J, Popp T, Sheldon S, Simonsen S B, Sjolte J, Steffensen J P, Sperlich P, Sveinbjörnsdóttir A E, Vinther B M, White J W C. 2013. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet. Atmos Chem Phys, 13: 4815–4828

    Article  Google Scholar 

  • van de Berg W J, van den Broeke M R, Reijmer C H, van Meijgaard E. 2006. Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J Geophys Res, 111: D11104

    Article  Google Scholar 

  • van den Broeke M, van de Berg W J, van Meijgaard E, Reijmer C. 2006. Identification of Antarctic ablation areas using a regional atmospheric climate model. J Geophys Res, 111: D18110

    Article  Google Scholar 

  • van den Broeke M, van de Berg W J, van Meijgaard E. 2008. Firn depth correction along the Antarctic grounding line. Antarct Sci, 20: 513–517

    Google Scholar 

  • Vionnet V, Brun E, Morin S, Boone A, Faroux S, Le Moigne P, Martin E, Willemet J M. 2012. The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geosci Model Dev, 5: 773–791

    Article  Google Scholar 

  • Wang Y, Ding M, van Wessem J M, Schlosser E, Altnau S, van den Broeke M R, Lenaerts J T M, Thomas E R, Isaksson E, Wang J, Sun W. 2016. A comparison of Antarctic Ice sheet surface mass balance from atmospheric climate models and in situ observations. J Clim, 29: 5317–5337

    Article  Google Scholar 

  • Watanabe O. 1978. Distribution of surface features of snow cover in Mizuho Plateau. Memoirs National Institute Polar Res, 7: 154–181

    Google Scholar 

  • Williams C N, Basist A, Peterson T C, Grody N. 2000. Calibration and verification of land surface temperature anomalies derived from the SSM/I. Bull Amer Meteorol Soc, 81: 2141–2156

    Article  Google Scholar 

  • Winther J G, Jespersen M N, Liston G E. 2001. Blue-ice areas in Antarctica derived from NOAA AVHRR satellite data. J Glaciol, 47: 325–334

    Article  Google Scholar 

  • Xiao C, Ding M, Masson-Delmotte V, Zhang R, Jin B, Ren J, Li C, Werner M, Wang Y, Cui X, Wang X. 2012. Stable isotopes in surface snow along a traverse route from Zhongshan station to Dome A. East Antarctica. Clim Dyn, 41: 2427–2438

    Article  Google Scholar 

  • Xiao C, Qin D, Bian L, Zhou X, Allison I, Yan M. 2005. A precise monitoring of snow surface height in the region of Lambert Glacier basin-Amery Ice Shelf, East Antarctica. Sci China Ser D-Earth Sci, 48: 100

    Article  Google Scholar 

  • Zhou M, Zhang Z, Zhong S, Lenschow D, Hsu H M, Sun B, Gao Z, Li S, Bian X, Yu L. 2009. Observations of near-surface wind and temperature structures and their variations with topography and latitude in East Antarctica. J Geophys Res, 114: D17115

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. H.C. Steen-Larsen for the kind help with both language and science. This study was supported by the National Basic Research Program of China (Grant No. 2013CBA01804), the National Natural Science Foundation of China (Grant Nos. 41425003 & 41601070), the State Oceanic Administration of the People’s Republic of China Project on Climate in Polar Regions (Grant No. CHINARE2016-2020) and Climate Change Estimation Program by China Meteorological Administration (Grant No. CCSF201332).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to MingHu Ding or Tong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, M., Zhang, T., Xiao, C. et al. Snowdrift effect on snow deposition: Insights from a comparison of a snow pit profile and meteorological observations in east Antarctica. Sci. China Earth Sci. 60, 672–685 (2017). https://doi.org/10.1007/s11430-016-0008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-0008-4

Keywords

Navigation