Skip to main content
Log in

Identification of hydraulic conductivity distributions in density dependent flow fields of submarine groundwater discharge modeling using adjoint-state sensitivities

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

A mathematical optimal control method is developed to identify a hydraulic conductivity distribution in a density dependent flow field. Using a variational method, the adjoint partial differential equations are obtained for the density- dependent state equations used for the saline aquifer water flow. The adjoint equations are numerically solved in through a finite difference method. The developed method is applied to identify the hydraulic conductivity distribution through the numerical solution of an optimal control problem. To demonstrate the effectiveness of the optimal control method, three numerical experiments are conducted with artificial observation data. The results indicate that the developed method has the potential to accurately identify the hydraulic conductivity distribution in a saline water aquifer flow system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakker M. 2003. A Dupuit formulation for modeling seawater intrusion in regional aquifer systems. Water Resour Res, 39: 1131, doi: 10.1029/2002WR001710

    Article  Google Scholar 

  • Bastani M, Kholghi M, Rakhshandehroo G. 2010. Inverse modeling of variable-density groundwater flow in a semiarid area in Iran using a genetic algorithm. Hydrogeol J, 18: 1191–1203

    Article  Google Scholar 

  • Baxter G P, Wallace C C. 1916. Changes in volume upon solution in water of halogen salts of alkali metals: IX. J AM Chem Soc, 38: 70–104

    Article  Google Scholar 

  • Burnett W, Aggarwal P, Aureli A. 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ, 367: 498–543

    Article  Google Scholar 

  • Carrera J, Hidalgo J, Slooten L, Vázquez-Suñé E. 2010. Computational and conceptual issues in the calibration of seawater intrusion models. Hydrogeol J, 18: 131–145

    Article  Google Scholar 

  • Clemo T. 2007. MODFLOW-2005 Ground-Water Model-User guide to the adjoint state based sensitivity process (ADJ). Technical Report BSU CGISS 07-01-Center for the Geophysical Investigation of the Shallow Subsurface Boise State University

    Google Scholar 

  • Church T. 1996. An underground route for water cycle. Nature, 380: 579–580

    Article  Google Scholar 

  • Glover R. 1959. The pattern of fresh-water flow in a coastal aquifer. J Geophys Res, 64: 457–459

    Article  Google Scholar 

  • Guo W, Langevin C. 2002. User’s guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow: Techniques of Water-Resources Investigations Book 6. Chapter A7

    Google Scholar 

  • Hill M C. 1992. A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional, ground-water flow model using nonlinear regression. U.S. Geological Survey Open-File Report 91–484, 358

    Google Scholar 

  • Holzbecher E. 1998. Modeling Density-Driven Flow in Porous Media. Berlin: Springer

    Book  Google Scholar 

  • Jackson C, Watson S. 2001. Modeling variable density groundwater flow. Phys Chem Earth-Part B: Hydrol, Oceans Atmos, 26: 333–336

    Article  Google Scholar 

  • Langevin C, Shoemaker W, Guo W. 2003. MODFLOW-2000, the U.S. Geological Survey modular ground-water model–documentation of the SEAWAT-2000 version with the Variable-Density Flow process (VDF) and the Integrated MT3DMS Transport process (IMT): U.S. Geological Survey Open-File Report 03–426

    Google Scholar 

  • Li X Y, Hu B X, Burnett W C, Santos I. R, Chanton J P. 2009. Submarine ground water discharge driven by tidal pumping in a heterogeneous aquifer. Ground Water, 47: 558–568

    Article  Google Scholar 

  • Li H, Yang Q C. 2000. A least-squares penalty method algorithm for the inverse problems of steady state aquifer models. Adv Water Resour, 23: 867–880

    Article  Google Scholar 

  • Mao X, Enot P, Barry D, Li L, Binley A, Jeng D S. 2006. Tidal influence on behavior of a coastal aquifer adjacent to a low-relief estuary. J Hydrol, 327: 110–127

    Article  Google Scholar 

  • Moore W. 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 380: 612–614

    Article  Google Scholar 

  • Poeter E, Hill M. 1998. Documentation of Ucode, A Computer Code for Universal Inverse Modeling, U.S. Geological Survey, Water-Resource Investigations Report 98-4080

    Google Scholar 

  • Poeter P, Hill C. 1999. UCODE, A computer code for universal inverse modeling. Comput Geosci, 25: 457–462

    Article  Google Scholar 

  • Putti M, Paniconi C. 1995. Picard and Newton linearization for the coupled model for saltwater intrusion in aquifers. Adv Water Resour, 18: 159–170

    Article  Google Scholar 

  • Robinson C, Li L, Prommer H. 2006. Tide-induced recirculation across the aquifer-ocean interface. Water Resour Res, 43: W07428

    Google Scholar 

  • Sahuquillo A, Hendricks Franssen H J W M, Gômez-Hernândez J J. 2000. Computational aspects of the coupled inversion of groundwater flow and mass transport, Groundwater Modeling. Proceedings of the ModelCARE 99 Conference Held at Zurich, Switzerland, September 1999. IAHS Publ. No. 265

    Google Scholar 

  • Sanford W E, Konikow L F. 1985. A two-constituent solute transport mod el for groundwater having variable density. U.S. Geological Survey Water Resources Investigation Report 85-4279. 89

    Google Scholar 

  • Sanz E, Voss C I. 2006. Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem. Adv Water Resour, 29: 439–457

    Article  Google Scholar 

  • Schincariol R, Schwartz F. 1990. An experimental investigation of variable density flow homogeneous and heterogeneous media. Water Resour Res, 26: 2317–2329

    Article  Google Scholar 

  • Shoemaker W. 2004. Important observations and parameters for a salt water intrusion model. Ground Water, 42: 829–840

    Article  Google Scholar 

  • Shor N Z. 1985. Minimization Methods for Non-Differentiable Functions, Springer Series in Computational Mathematics. Vol. 3. Berlin: Springer-Verlag

    Book  Google Scholar 

  • Simmons C, Fenstemaker T, Sharp J. 2001. Variable-density groundwater flow and solute transport in heterogeneous porous media: Approaches, resolutions and future challenges. J Contam Hydrol, 52: 245–275

    Article  Google Scholar 

  • Sun N Z, Yeh W. 1990. Coupled inverse problems in groundwater Modeling 2. Identifiability and Experimental Design. Water Resour Res, 26: 2527–2540

    Google Scholar 

  • Sun N Z. 1994. Inverse Problems in Groundwater Modeling. Heidelberg: Springer

    Google Scholar 

  • Sun N Z, Elimelech E, Ryan J. 2001. Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media. Water Resour Res, 37: 209–222

    Article  Google Scholar 

  • Sykes J F, Wilson J L, Andrews R W. 1985. Sensitivity analysis for steady state ground-water flow using adjoint operators. Water Resour Res, 21: 359–371

    Article  Google Scholar 

  • Townley L, Wilson J. 1985. Computationally efficient algorithms for parameter estimation and uncertainty propagation in numerical models of groundwater flow. Water Resour Res, 21: 1851–1860

    Article  Google Scholar 

  • Voss C I. 1984. SUTRA, A finite-element simulation model for saturated-unsaturated fluid density-dependent groundwater flow with energy transport or chemically-reactive single-species solute transport. U.S. Geological Survey Water Resources Investigations Report 84–4369. 409

    Google Scholar 

  • Wilson J L, Metcalf D G. 1985. Illustration and verification of adjoint sensitivity theory for steady-state groundwater flow. Water Resour Res, 21: 1602–1610

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill X. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B.X., Cao, Y., Zhao, W. et al. Identification of hydraulic conductivity distributions in density dependent flow fields of submarine groundwater discharge modeling using adjoint-state sensitivities. Sci. China Earth Sci. 59, 770–779 (2016). https://doi.org/10.1007/s11430-015-5236-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5236-x

Keywords

Navigation