Skip to main content
Log in

Geochemical processes and origin of boron isotopes in geothermal water in the Yunnan-Tibet geothermal zone

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Boron concentrations and isotope compositions have been measured for 93 water samples from the hot springs and drill-holes in the geothermal system in the Yunnan-Tibet Geothermal Belt (YTGB), China. Boron concentrations range from 0.036–472.4 ppm, and the δ 11B values range from −16.0‰ to 13.1‰, indicating the non-marine origin for each geothermal system. We observed a clear binary mixing relationship between the B concentrations and B isotope compositions in Tibet geothermal area. This relationship can be well explained by two sources, i.e., marine carbonate rocks and magmatic rocks, for the Tibet geothermal water. No evidence supports a mantle contribution to B. In addition, we found that the precipitation only plays a dilution role for B of geothermal waters. δ 11B values for the precipitation across the southern Tibetan Plateau area range from −6.0‰ to −6.8‰ at least. Due to data scarcity in Yunnan geothermal area, we observed possible different boron sources from the Tibet geothermal system. Comparing it with other geothermal systems in the world, we found that the samples from YTGB have the lowest δ 11B values and the largest range of B concentration, which might be related to their special geological background. On the whole, the world geothermal δ 11B-Cl/B relation suggests a mixing process between marine and non-marine sources. Additionally, we suggest that B source of B-enriched geothermal waters is mainly from B-enriched crustal country-rocks, instead of mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal J K, Palmer M R, Arnórsson S, et al. 2000. The boron isotope systematics of Icelandic geothermal waters: 1. Meteoric water charged systems. Geochim Cosmochim Acta, 64: 579–585

    Article  Google Scholar 

  • Aggarwal J K, Sheppard D, Mezger K, et al. 2003. Precise and accurate determination of boron isotope ratios by multiple collector ICP-MS: Origin of boron in the Ngawha geothermal system, New Zealand. Chem Geol, 199: 331–342

    Article  Google Scholar 

  • Arnórsson S. 2000. Isotopic and Geochemical Techniques in Geothermal Exploration, Development and Use: Sampling Methods, Data Handling, Interpretation. Vienna: International Atomic Energy Agency

    Google Scholar 

  • Arnórsson S, Andrésdóttir A. 1995. Processes controlling the distribution of boron and chlorine in natural waters in Iceland. Geochim Cosmochim Acta, 59: 4125–4146

    Article  Google Scholar 

  • Barth S. 1993. Boron isotope variations in nature: A synthesis. Geol Rundsch, 82: 640–651

    Article  Google Scholar 

  • Bllsnluk P M, Hacker B, Glodny J, et al. 2001. Normal faulting in central Tibet since at least 13.5 Myr ago. Nature, 412: 628–632

    Article  Google Scholar 

  • Chaussidon M, Albarède F. 1992. Secular boron isotope variations in the continental crust: An ion microprobe study. Earth Planet Sci Lett, 108: 229–241

    Article  Google Scholar 

  • Chaussidon M, Marty B. 1995. Primitive boron isotope composition of the mantle. Science, 269: 383–386

    Article  Google Scholar 

  • Chen K Z, Yang S X, Zheng X Y. 1981. The salt lakes on the Qinghai-Xizang Plateau (in Chinese). Acta Geogr Sin, 36: 13–21

    Google Scholar 

  • Craig H, Boato G, White D E. 1956. Isotope geochemistry of thermal waters. Nat Res Council Publ, 400, 29–38

    Google Scholar 

  • Craig H. 1963. The isotope geochemistry of water and carbon in geothermal areas. In: Tongiorgi E, ed. Nuclear Geology on Geothermal Areas. Spoleto: Geol Nucl, Pisa. 17–53

    Google Scholar 

  • Ellis A J, Mahon W A. 1964. Natural hydrothermal systems and experimental hot water/rock interactions. Geochim Cosmochim Acta, 28: 1323–1357

    Article  Google Scholar 

  • Ellis A J, Mahon W A. 1967. Natural hydrothermal systems and experimental hot water/rock interactions (Part II). Geochim Cosmochim Acta, 21: 519–538

    Article  Google Scholar 

  • Ellis A J. 1966. Volcanic hydrothermal areas and the interpretation of thermal water compositions. Bull Volcanol, 29: 575–584

    Article  Google Scholar 

  • Ellis A J. 1970. Quantitative interpretation of chemical characteristics of hydrothermal systems. Geothermics, 2: 516–528

    Article  Google Scholar 

  • Fogg T R, Duce R A. 1985. Boron in the troposphere: Distribution and fluxes. J Geophy Res. 90: 3781–3796

    Article  Google Scholar 

  • Francheteau J, Jaupart C, Shen X et al. 1984. High heat flow in southern Tibet. Nature, 307: 32–36

    Article  Google Scholar 

  • Guo Q H, Wang Y X, Liu W. 2007. Major hydrogeochemical processes in the two reservoirs of the Yangbajaing geothermal field, Tibet, China. J Volcanol Geotherm Res, 166: 255–268

    Article  Google Scholar 

  • Guo Q, Wang Y, Liu W. 2009. Hydrogeochemistry and environmental impact of geothermalwaters fromYangyi of Tibet, China. J Volcanol Geotherm Res, 180: 9–20

    Article  Google Scholar 

  • Guo Q H, Wang Y X, Liu W. 2010. O, H, and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajaing, Tibet, China. Environ Earth Sci, 59: 1589–1597

    Article  Google Scholar 

  • Gurenko A A, Chaussidon M. 1997. Boron concentrations and isotopic composition of the Icelandic mantle: Evidence from glass inclusions in olivine. Chem Geol, 135: 21–34

    Article  Google Scholar 

  • Hemming N G, Hanson G N. 1992. Boron isotope composition and concentration in modern marine carbonates. Geochim Cosmochim Acta, 56: 537–543

    Article  Google Scholar 

  • Hemming N G, Reeder R J, Hanson G N. 1995. Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate. Geochim Cosmochim Acta, 59: 371–379

    Article  Google Scholar 

  • Hogan J F, Blum J D. 2003. Boron and lithium isotopes as ground-water tracers: A study at the Fresh Kills Landfill, Staten Island, New York, USA. Appl Geochem, 18: 615–627

    Article  Google Scholar 

  • Hou Z Q, Li Z Q. 2004. Possible location for underthrusting front of the Indus continent constraints from helium isotope of the geothermal gas in southern Tibet and eastern Tibet (in Chinese). Acta Geol Sin, 4: 482–493

    Google Scholar 

  • Jin C W, Zhou Y S. 1978. Igneous rock belts in the Himalayas and the Gandes Arc and their genetic model (in Chinese). Acta Geol Sin, 4: 297–312

    Google Scholar 

  • Kasemann S A, Meixner A, Erzinger J, et al. 2004. Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina). J South Am Earth Sci, 16: 685–697.

    Article  Google Scholar 

  • Kearey P, Wei H. 1993. Geothermal fields of China. J Volcanol Geotherm Res, 56: 415–428

    Article  Google Scholar 

  • Liao Z J, Zhao P. 1999. Dian-Zang Geothermal Belt-Geothermal Resources and Systems (in Chinese). Beijing: Science Press. 153

  • Lü Y Y, Xu R H, Zhao P et al. 2008. Determination of boron isotope ratios in aqueous samples by multiple collector ICP-MS (in Chinese). Geochimica, 37: 1–8

    Google Scholar 

  • Lü Y Y, Zhao P, Xu R H et al. 2012. Preliminary Study on Boron Isotope Geochemistry in the Yangbajaing Geothermal Field, Tibet (in Chinese). Chin J Geol, 47: 251–264

    Google Scholar 

  • Lü Y Y, Zheng M P, Chen W X, et al. 2013. Origin of boron in the Damxung Co Salt Lake (central Tibet): Evidence from boron geochemistry and isotopes. Geochem J, 47: 513–523

    Article  Google Scholar 

  • Lü Y Y. 2008. Measurement of Boron isotope by MC-ICP-MS and its preliminary application into the geothermal and salt lake studies (in Chinese). PhD Dissertation. Beijing: Institute of Geology and Geophysics, Chinese Academy of Science

    Google Scholar 

  • Mahon W A. 1967. Natural hydrothermal systems and the reaction of hot water with sedimentary rocks. New Zealand J Sci, 10: 206–221.

    Google Scholar 

  • Mariner R H, Willey L M. 1976. Geochemistry of thermal waters in Long Valley, Mono County, California. J Geophys Res, 81: 792–800

    Article  Google Scholar 

  • Mason B, Moore C B. 1982. Principles of Geochemistry. New York: John Wiley and Sons

    Google Scholar 

  • Millot R, Négrel Ph. 2007. Multi-isotopic tracing (δ 7Li, δ 11B, 87Sr/86Sr) and chemical geothermometry: Evidence from hydro-geothermal systems in France. Chem Geol, 244: 664–678

    Article  Google Scholar 

  • Millot R, Hegan A, Négrel Ph. 2012. Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr isotopes characterization. Appl Geochem, 27: 677–688

    Article  Google Scholar 

  • Millot R, Négrel Ph, Petelet-Giraud E. 2007. Multi-isotopic (Li, B, Sr, Nd) approach for geothermal reservoir characterization in the Limagne Basin (Massif Central, France), Appl Geochem, 22: 2307–2325

    Article  Google Scholar 

  • Miyata Y, Tokieda T, Amakawa H et al. 2000. Boron isotope variations in the atmosphere. Tellus, 52 B: 1057–1065

    Article  Google Scholar 

  • Molnar P., Stock J. 2009. Slowing of India’s Convergence with Eurasia at ∼10 Ma and its Implications for Tibetan Mantle Dynamics. Tectonics. 28, TC3001, doi: 10.1029/2008TC002271

    Article  Google Scholar 

  • Musashi M, Nomura M, Okamoto M, et al. 1988. Regional variation in the boron isotopic composition of hot spring waters from central Japan. Geochem J, 22: 205–214

    Article  Google Scholar 

  • Oi T, Ikeda K, Nakano M et al. 1996. Boron isotope geochemistry of hot spring waters in Ibusuki and adjacent area, Kagoshima, Japan. Geochem J, 30: 273–287

    Article  Google Scholar 

  • Oi T, Ogawa J, Ossaka T. 1993. Boron isotopic compositions of Shimogamo hot springs, Izu, Japan. Geochem J, 27: 147–154

    Article  Google Scholar 

  • Palme H, O’Neill H St C. 2007. Cosmochemical Estimates of Mantle Composition. Treatise Geochem, 2: 1–38

    Article  Google Scholar 

  • Palmer M R, Sturchio N C. 1990. The boron isotope systematic of the Yellowstone National Park (Wyoming) hydrothermal system: A reconnaissance. Geochim Cosmochim Acta, 54: 2811–2815

    Article  Google Scholar 

  • Palmer M R, Spivack A J, Edmond J M. 1987. Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochim Cosmochim Acta, 51: 2319–2323

    Article  Google Scholar 

  • Pan G T, Wang L Q, Li X Z, et al. 2001. The tectonic framework and spatial allocation of the archipelagic arc-basin systems on the Qinghai-Xizang Plateau (in Chinese). Sediment Geol Tethyan Geol, 21: 1–26

    Google Scholar 

  • Pham V N, Boyer D, Therme P et al. 1986. Partial melting zones in the crust in southern Tibet from magnettelluric results. Nature 319: 310–314

    Article  Google Scholar 

  • Poreda R J, Craig H, Arnórsson S, et al. 1992. Helium isotopes in Icelandic geothermal systems: I. 3He, gas chemistry, and 13C relations. Geochim Cosmochim Acta, 56: 4221–4228

    Article  Google Scholar 

  • Rose E F, Chaussidon M, France-Lanord C. 2000. Fractionation of boron isotopes during erosion processes: The example of Himalayan rivers. Geochim Cosmochim Acta, 64: 397–408

    Article  Google Scholar 

  • Rose-Koga E F, Sheppard S M F. Chaussidon M et al. 2006. Boron isoto-pic composition of atmospheric precipitations and liquid-vapour fractionations. Geochim Cosmochim Acta, 70: 1603–1615

    Article  Google Scholar 

  • Sauerer A, Troll G, Matthies D. 1990. Microdistribution of boron: Particle-track images from samples of a Caledonian igneous complex. Terra Nova, 1: 359–364.

    Article  Google Scholar 

  • Savov I P, Leeman W P, Lee C-T A, et al. 2009. Boron isotopic variations in NW USA rhyolites: Yellowstone, Snake River Plain, Eastern Oregon. J Volcanol Geotherm Res, 188: 162–172

    Article  Google Scholar 

  • Smith R B, Jordan M, Steinberger B, et al., 2009. Geodynamics of the Yellowstone hotspot and mantle plume: Seismic and GPS imaging, kinematics, and mantle flow. J Volcanol Geotherm Res, 188: 26–56

    Article  Google Scholar 

  • Spivack A J, Edmond J M. 1986. Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation. Anal Chem, 58: 31–35

    Article  Google Scholar 

  • Spivack A J, Edmond J M. 1987. Boron isotope exchange between seawater and the oceanic crust. Geochim Cosmochim Acta, 51: 1033–1043

    Article  Google Scholar 

  • Spivack A J, You C F. 1997. Boron isotopic geochemistry of carbonates and pore waters, Ocean Drilling Program Site 851. Earth Planet Sci Lett, 152: 113–122

    Article  Google Scholar 

  • Taylor M, Yin A. 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere, 5: 199–214

    Article  Google Scholar 

  • Torgersen T, Lupton J E, Sheppard D S et al. 1982. Helium isotope variations in the thermal areas of New Zealand. J Volcanol Geotherm Res, 12: 283–298

    Article  Google Scholar 

  • T’ung W, Chang C-F, Chang M-T et al. 1978. The Himalayan Geothermal Belt (in Chinese). Acta Scientiarum Naturalium UN, 1: 76–88+157

    Google Scholar 

  • T’ung W, Chang M T, Chang C F et al. 1981. Tibetan Geotherms (in Chinese). Beijing: Science Press. 300

    Google Scholar 

  • T’ung W, Liao Z J, Liu S B et al. 2000. Thermal Springs in Tibet (in Chinese). Beijing: Science Press. 170

    Google Scholar 

  • T’ung W, Zhang J, 1981. Characteristics of geothermal activities in Xizang Plateau and their controlling influence on Plateau’s tectonic model. In: Gordon, Breach, eds. Geological and Ecological studies of the Qinghai-Xizang Plateau. New York: Science Publishers Inc. 841–846

    Google Scholar 

  • Turner S, Hawkesworth G, Liu J et al. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364: 50–54

    Article  Google Scholar 

  • Vengosh A, Helvaci C, Karamanderesi İ H. 2002. Geochemical constraints for the origin of thermal waters from western Turkey. Appl Geochem, 17: 163–183

    Article  Google Scholar 

  • Vengosh A, Starinsky A, Kolodny Y et al. 1991. Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel. Geochim Cosmochim Acta, 55: 1689–1695

    Article  Google Scholar 

  • Vengosh A, Starinsky A, Kolodny Y, et al. 1994. Boron isotope geochemistry of thermal springs from the northern Rift Valley, Israel. J Hydrol, 162: 155–169

    Article  Google Scholar 

  • Wang C, Zhao X, Liu Z, Lippert P C, et al. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA 105, 4987–4992

    Article  Google Scholar 

  • Wei S Y, Teng J W, Yang B P, et al. 1981. Characteristics of geothermal distribution and geophysical field of Xizang Plateau (in Chinese). Northwestern Seismol J, 3: 17–25

    Google Scholar 

  • White D E. 1970. Geochemistry applied to the discovery, evaluation, and exploitation of geothermal energy resources. Geothermics, 2: 58–57

    Google Scholar 

  • Williams H, Turner S, Kelley S, et al. 2001. Age and composition of dikes in Southern Tibet: new constraints on the timing of east-west extension and its relationship to post-collisional volcanism. Geology, 29: 339–342

    Article  Google Scholar 

  • Wu L L, Ma W Z, Tang Y. 1984. On the Water-chemical properties and formative conditions of High-boron brine in Qinghai-Xizang Plateau (in Chinese). Geograph Res, 3: 1–11

    Google Scholar 

  • Xiao Y K, Beary E S, Fassett J D. 1988. An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry. Int J Mass Spect Ion Proc, 85: 203–213

    Article  Google Scholar 

  • Xiao Y K, Li S Z, Wei H Z, et al. 2007. Boron isotopic fractionation during seawater evaporation. Mar Chem, 103: 382–392

    Article  Google Scholar 

  • Xiao Y K, Sun D P, Wang Y H, et al. 1992. Boron isotopic composition of brine, sediments, and source water in Da Qaidam Lake, Qinghai, China. Geochim Cosmochim Acta, 56: 1561–1568

    Article  Google Scholar 

  • Xiao Y K, Xiao Y, Swihart G H, et al. 1997. The investigation of ion exchange technique for extracting boron from aqueous fluids by boron specific ion exchange resin (in Chinese). Acta Geosci Sin, 18(Suppl): 286–289

    Google Scholar 

  • Xu S, Nakai S, Wakita H, Wang X, et al. 1994. Helium isotopic compositions in Quaternary volcanic geothermal area near Indo-Eurasian collisional margin at Tengchong, China. In: Matsuda J ed. Noble Gas Geochemistry and Cosmochemistry, Tokyo: Terra Scientic Publishing Company. 305–313

    Google Scholar 

  • Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci, 28: 211–280

    Article  Google Scholar 

  • Yokoyama T, Nakai S, Waikita H. 1999. Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau, J Volcanol Geotherm Res, 88: 99–107

    Article  Google Scholar 

  • Yu S S, Tang Y. 1981. The hydrochemical characteristics of the saline lakes on the Qinghai-Xizang Plateau (in Chinese). Oceanol Limnol Sin, 12: 498–511

    Google Scholar 

  • Zhao P, Xie E J, Dor J, et al. 2002. Geochemical characteristics of geothermal gases and their geological implications in Tibet (in Chinese). Acta Petrol Sin, 18: 539–550

    Google Scholar 

  • Zhao W J, Zhao X, Shi D N, et al. 2002. Process in the study of deep (INDEPTH) profiles in the Himalayas and Qinghai-Tibet Plateau (in Chinese). Geol Bull China, 11: 29–33

    Google Scholar 

  • Zhao Z Q, Liu C Q. 2010. Anthropogenic inputs of boron into urban atmosphere: evidence from boron isotopes of precipitations in Guiyang City, China. Atmos Environ, 44: 4165–4171

    Article  Google Scholar 

  • Zheng M P, Liu W G, Xiang J, et al. 1983. On saline lakes in Tibet, China (in Chinese). Acta Geol Sin, 2: 184–194

    Google Scholar 

  • Zheng M P, Xiang J, Wei X J, et al. 1989. Saline lakes on the Qinghai-Xizang (Tibet) Plateau (in Chinese). Beijing: Science Press. 431

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YuanYuan Lü or Ping Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, Y., Zheng, M., Zhao, P. et al. Geochemical processes and origin of boron isotopes in geothermal water in the Yunnan-Tibet geothermal zone. Sci. China Earth Sci. 57, 2934–2944 (2014). https://doi.org/10.1007/s11430-014-4940-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-4940-2

Keywords

Navigation