Skip to main content
Log in

Biomarker records in penguin droppings and observed changes in penguin communities and their response to the ENSO in the Western Antarctic

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Lipid biomarkers in AD2 penguin droppings-amend soil core from the Ardley Island, Western Antarctic, were dated using 210Pb. Changes in the fatty acid ratios of nC18:2/nC18:0 from the penguin droppings reflect climate changes coincident with ENNO events during 1931–2006. The occurrence of the minimum values in the depth of 2–3 and 6–7 cm are consistent with the end of ENSO in 1958 and 1983, respectively, reflecting a lag of the biomarker records in AD2 penguin droppings-amend soil in climatic signatures. This study also reveals that the changes in the relative concentration of n-alkanes nC23, the ratios of nC23/nC17 and ΣnC21 nC22 +, and carbon preferential index (CPI) values collectively indicate the variations of soil microorganism and lower plant, which are closely related to climate changes. The ratios of bacterial fatty acids iC15:0/aC15:0 reflect the increasing significance of microorganism activities during the two periods that occurred at the end years of ENSO. Decrease in CPIA value and increase in ΣnC21 t-nC22 + indicate that low molecular weight fatty acids are derived from microorganism; and their insignificant correlation with Pr/Ph suggests microorganisms play an important role in the relatively simply ecosystem in the Antarctic and are closely linked to climatic conditions. In addition, the observed penguin community indicates the population of penguin can largely reflect the impacts of global climate changes on the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Philander S G H. El Niño, La Nina, and the Southern Oscillation. San Diego: Academic Press, 1990. 1–293

    Google Scholar 

  2. McPhaden M J, Busalacchi A J, Cheney R, et al. The Tropical Ocean-Global Atmosphere observing system: A decade of progress. J Geophys Res, 1998, 103: 14169–14240

    Article  Google Scholar 

  3. McBride J L, Nicholls N. Seasonal relationships between Australia rainfall and the Southern Oscillation. Monthly Weather Rev, 1983, 111: 1998–2004

    Article  Google Scholar 

  4. Barber R T, Chavez F P. Biological consequences of El Niño. Science, 1983, 222: 1203–1210

    Article  Google Scholar 

  5. Kerr R A. El Niño grew strong as cultures were born. Science, 1999, 283: 467–468

    Article  Google Scholar 

  6. Shulmeister J, Lees B G. Pollen evidence from tropical Australia for the onset of an ENSO-dominated climate at c. 4000 BP. Holocene, 1995, 5: 10–18

    Article  Google Scholar 

  7. Turney C S M, Kershaw A P, Clemens S C, et al. Millennial and orbital variation of El Niño/Southern Oscillation and high-latitude climate in the last glacial period. Nature, 2004, 428: 306–310

    Article  Google Scholar 

  8. Chiu L S. Antarctic sea ice variation 1973–1980. In: Street-Perrott A, Beran M, Ratcliffe R, eds. Variations in the Global Water Budget. Dordrecht: Reidel Publishing Co., 1983. 301–311

    Chapter  Google Scholar 

  9. Carleton A M. Antarctic sea-ice relationships with indices of the atmospheric circulation of the Southern Hemisphere. Clim Dyn, 1989, 3: 207–220

    Article  Google Scholar 

  10. Simmonds I, Jacka T H. Relationships between the interannual variability of Antarctic sea ice and the Southern Oscillation. J Clim, 1995, 8: 637–648

    Article  Google Scholar 

  11. Yuan X, Cane M A, Martinson D G. Climate variations: Cycling around the South Pole. Nature, 1996, 380: 673–674

    Article  Google Scholar 

  12. Chen J N, Qin Z H, Chu J T, et al. Impact of the ENSO episodes on the variability of the Antarctic sea ice extent (in Chinese). Chin J Polar Res, 2003, 15: 129–137

    Google Scholar 

  13. Chen J N, Chu J T, Xu L Y. ENSO events associated with the variation of the Antarctic sea ice extent (in Chinese). Adv Water Sci, 2004, 15: 56–60

    Google Scholar 

  14. Chen Y J, Lu L H, Bian L G, et al. The relationship between air temperature of Antarctic peninsular, Antarctic sea ice oscillation and ENSO (in Chinese). Chin J Polar Res, 2003, 15: 121–128

    Google Scholar 

  15. Cullather R I, Bromwich D H, Van Woert M L. Interannual variations in Antarctic precipitation related to El Niño-Southern Oscillation. J Geophys Res, 1996, 101: 19109–19118

    Article  Google Scholar 

  16. Yin H F, Yang F Q, Xie S C, et al. Biogeology (in Chinese). Wuhan: Hubei Secience and Technology Press, 2004. 94–130

    Google Scholar 

  17. Guo Z G, Yang Z S, Chen Z L, et al. Source of sedimentary organic matter in the mud areas of the East China Sea shelf (in Chinese). Geochimica, 2001, 30: 416–424

    Google Scholar 

  18. Brincat D, Yamada K, Ishiwatari R, et al. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments. Org Geochem, 2000, 31: 287–294

    Article  Google Scholar 

  19. Meyers P A, Ishiwatari R. Lacustrine Organic Geochemistry-An overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem, 1993, 20: 867–900

    Article  Google Scholar 

  20. Kawamura K, Ishiwatari R. Polyunsaturated fatty acids in a lacustrine sediment as a possible indicator of paleoclimate. Geochim Cosmochim Acta, 1981, 45: 149–155

    Article  Google Scholar 

  21. Chen J, Gong Z T, Blume H P. Soils in maritime Antarctic: I. Weathering processes (in Chinese). Soils, 2003, 35: 279–285

    Google Scholar 

  22. Wu B L. Ecosystem research in Fildes Peninsula and the surrounding area, Antarctica (in Chinese). Chinese Arctic and Antarctic Administration. Chinese Antarctic Scientific Research Results and Progress. Beijing: Science Press, 1995. 65–361

    Google Scholar 

  23. Appleby P G, Nolan P J, Gifford D W, et al. 210Pb dating by low background gamma counting. Hydrobiologia, 1986, 143: 21–27

    Article  Google Scholar 

  24. Philp R P. Fossil Fuel Biomarkers: Applications and Spectra. Translated by Fu J M, Sheng G Y. Beijing: Science Press, 1987

    Google Scholar 

  25. Zhang Z W, Zheng G M, Yuan J F, et al. Census of Penguins on Ardley Island of Western Antarctic. Biodiv Sci, 1994, 2(Suppl): 30–35

    Google Scholar 

  26. Leeming R, Nichols P D. Concentrations of coprostanol that correspond to existing bacterial indicator guideline limits. Wat Res, 1996, 30: 2997–3006

    Article  Google Scholar 

  27. Leeming R, Latham V, Rayner M, et al. Detecting and distinguishing sources of sewage pollution in Australian inland and coastal waters and sediments. ACS Symp Ser, 1997, 671: 306–319

    Article  Google Scholar 

  28. Robertson G. Population-size and breeding success of the Gentoo Penguin, Pygoscelis-Papua, at Macquarie Island. Aust Wildl Res, 1986, 13: 583–587

    Article  Google Scholar 

  29. Ficken K J, Barber K E, Eglinton G. Lipid biomarker, δ 13C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millennia. Org Geochem, 1998, 28: 217–238

    Article  Google Scholar 

  30. Nott C J, Xie S, Avsejs L A, et al. n-alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation. Org Geochem, 2000, 31: 231–235

    Article  Google Scholar 

  31. Xie S, Nott C J, Avsejs L A, et al. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat. Org Geochem, 2000, 31: 1053–1057

    Article  Google Scholar 

  32. Otto A, Walther H, Püttmann W. Molecular composition of leaf- and root-bearing Oligocene Oxbow Lake Clay in the Weisselster Basin, Germany. Org Geochem, 1994, 22: 275–286

    Article  Google Scholar 

  33. Blumer M, Guillard R R L, Chase T. Hydrocarbons of marine phytoplankton. Mar Biol, 1971, 8: 183–189

    Article  Google Scholar 

  34. Ramsay A J, Stannard R E. Numbers and viability of bacteria in ornithogenic soils of Antarctica. Polar Biol, 1986, 5: 195–198

    Article  Google Scholar 

  35. Bölter M, Blume H P, Schneider D, et al. Soil properties and distributions of invertebrates and bacteria from King George Island (Arctowski Station), maritime Antarctic. Polar Biol, 1997, 18: 295–304

    Article  Google Scholar 

  36. Wang P, Wang F P. Phylogenetic diversity of culturable bacteria in lake sediment of Ardley Island, Antarctic (in Chinese). Chin J Polar Res, 2009, 21: 100–108

    Google Scholar 

  37. Didyk B M, Simoneit B R T, Brassell S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 1978, 272: 216–222

    Article  Google Scholar 

  38. Zhao Y Y, Luan Z F, Sun Z Q, et al. Characteristics of the fatty acids and alkane in marine sediments of the South China Sea (in Chinese). Annual Research Reports of State Key Laboratory of Organic Geochemistry, Chinese Academy of Sciences, 1986. 1–9

  39. Marr A G, Ingraham J L. Effect of temperature on the composition of fatty acids in Escherichia coli. J Bacteriol, 1962, 84: 1260–1267

    Google Scholar 

  40. Kaneda T. Fatty acids in the genus Bacillus I. Iso- and anteiso-fatty acids as characteristic constituents of lipids in 10 species. J Bacteriol, 1967, 93: 894–903

    Google Scholar 

  41. Bowman J P, Cavanagh J, Austin J J, et al. Novel Psychrobacter species from Antarctic ornithogenic soils. Int J Sys Bacteriol, 1996, 46: 841–848

    Article  Google Scholar 

  42. Romanenko L A, Lysenko A M, Rohde M, et al. Psychrobacter maritimus sp. nov. and Psychrobacter arenosus sp. nov., isolated from coastal sea ice and sediments of the Sea of Japan. Int J Sys Evolution Microbiol, 2004, 54: 1741–1745

    Article  Google Scholar 

  43. Brassell S C. Application of biomarkers for delineation marine paleoclimatic fluctuations during the Pleistocene. In: Engel M H, Macko S A, eds. Org Geochem. New York: Plenum Press, 1993. 699–733

    Chapter  Google Scholar 

  44. Pace M L, Carpenter S R, Cole J, et al. Does terrestrial organic carbon subsidize the planktonic food web in a clear-water lake? Limnol Oceanogr, 2007, 52: 2177–2189

    Article  Google Scholar 

  45. Zou L, Sun M Y, Guo L D. Temporal variations of organic carbon inputs into the upper Yukon River: Evidence from fatty acids and their stable carbon isotopic compositions in dissolved, colloidal and particulate phases. Org Geochem, 2006, 37: 944–956

    Article  Google Scholar 

  46. Summit M, Peacock A, Ringelberg D, et al. Phospholipid fatty acid-derived microbial biomass and community dynamics in hot, hydrothermally influenced sediments from Middle Valley, Juan De Fu ca Ridge. In: Zierenberg R A, Fouquet Y, Miller D J, et al, eds. Proceedings of the Ocean Drilling Program Scientific Results, 2000, 169: 1–19

  47. Pietr S J, Tatur A, Myrcha A. Mineralization of penguin excrements in the Admiralty Bay region (King George Island, South Shetland Islands, Antarctica). Polish Polar Res, 1983, 4: 97–112

    Google Scholar 

  48. Wang J J, Sun L G, Hu J F, et al. Organic geochemistry of penguin ornithogenic sediment from Ardley Island, West Antarctica (in Chinese). Chin J Polar Res, 2006, 18: 245–253

    Article  Google Scholar 

  49. Myrcha A, Pietr S J, Tatur A. The role of pygoscelid penguin rookeries in nutrient cycles at Admiralty Bay, King George Island. In: Siegfried WR, Condy P R, Laws R M, eds. Antarctic Nutrient Cycles and Food Webs. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1985, 156–162

    Google Scholar 

  50. Nishimura M. The geochemical significance in early sedimentation of geolipids obtained by saponification of lacustrine sediments. Geochim Cosmochim Acta, 1977, 41: 1817–1823

    Article  Google Scholar 

  51. Vargas F, Harrison S, Rea S, et al. Biological effects of El Niño on the Galápagos penguin. Biol Conser, 2006, 127: 107–114

    Article  Google Scholar 

  52. Hemmings A D. Human impacts and ecological constraints on skuas. In: Kerry K R, Hempel G, eds. Antarctic Ecosystems: Ecological Change and Conservation. Berlin, Heidelberg, New York: Springer-Verlag, 1990. 224–230

    Google Scholar 

  53. Peter H U, Buesser C, Mustafa O, et al. Evaluierung des Gefährdungsgrades der Gebiete Fildes Peninsula und Ardley Island und Entwicklung der Managementpläne zur Ausweisung als besonders geschützte oder verwaltete Gebiete. Dessau: UBA-report, 2008. 310

    Google Scholar 

  54. Wang Z P. Peter H U, Pfeiffer S. Species and distribution of the birds on fildes peninsula, King George Island, Antarctica (in Chinese). Chin J Polar Res, 2004, 16: 271–280

    Google Scholar 

  55. Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Org Geochem, 2003, 34: 261–289

    Article  Google Scholar 

  56. Gross L. As the Antarctic ice pack recedes, a fragile ecosystem hangs in the balance. PloS Biol, 2005, 3: e127

    Article  Google Scholar 

  57. Siegel V, Holm-Hansen O, Hewitt R, et al. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature, 1997, 387: 897–900

    Article  Google Scholar 

  58. Bian L G, Wang J X, Lin X C, et al. Interdecadal oscillation of temperature in the Antarctic peninsula in the last 100 years (in Chinese). J Glaciol Geocry, 2004, 26: 267–274

    Google Scholar 

  59. Simoneit B R T, Cardoso J N, Robinson N. An assessment of terrestrial higher molecular weight lipid compounds in aerosol particulate matter over the South Atlantic from about 30°-70°S. C Chemosphere, 1991, 23: 447–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiSheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Lu, D., Yu, P. et al. Biomarker records in penguin droppings and observed changes in penguin communities and their response to the ENSO in the Western Antarctic. Sci. China Earth Sci. 55, 1238–1247 (2012). https://doi.org/10.1007/s11430-012-4439-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-012-4439-7

Keywords

Navigation