Skip to main content
Log in

Preliminary analysis of species sensitivity distribution based on gene expression effect

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Species sensitivity analysis is one of the major techniques applied to derive water quality criteria. Presently, the toxicity data used for development of water quality criteria are mainly in the biological individual level. With the increase of ecotoxicogenomics toxicity data, it is worth studying whether the gene expression effect data can be used to derive water quality criteria. Taking cadmium, copper and zinc as examples, we analyzed the toxic effects of the three heavy metals by constructing the species sensitivity distribution curves on the basis of extensive toxicity data. The results showed that the rank of species sensitivity for the acute, chronic and gene expression effect toxicity data of cadmium is “chronic>gene>acute”. Although the gene expression effect data of copper and zinc are insufficient, the trend of data sensitivity of zinc is similar to cadmium. However, the trend of species sensitivity of copper is different from that of cadmium and zinc with higher sensitivity of gene expression data. It suggested that though the existing data of gene expression effects are not sufficient enough, they have the potential to be used in the development of chronic water quality criteria. For application in the derivation of water quality criteria, illogical test concentration design and insufficient target genes are two main weaknesses in the study of gene expression effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Posthuma L, Suter II G W, Traas T P. Species Sensitivity Distributions in Ecotoxicology. Boca Raton: Lewis Publishers, 2002

    Google Scholar 

  2. Wheeler J R, Grist E P M, Leung K M Y, et al. Species sensitivity distributions: Data and model choice. Mar Pollut Bull, 2002, 45: 192–202

    Article  Google Scholar 

  3. US EPA. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses (PB 85-227049). Washington DC: USEPA; Springfield VA: NTIS, 1985

    Google Scholar 

  4. Aldenberg T, Solb W. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicol Environ Saf, 1993, 25: 48–63

    Article  Google Scholar 

  5. Aldenberg T, Jaworska J S. Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicol Environ Saf, 2000, 46: 1–18

    Article  Google Scholar 

  6. Yan Z, Meng W, Liu Z, et al. Development of freshwater aquatic life criteria for ammonia in China (in Chinese). Environ Sci, 2011, 32: 1564–1570

    Google Scholar 

  7. Yan Z, Meng W, Liu Z, et al. Development of aquatic life criteria for cadmium for typical basins in China (in Chinese). Environ Sci Res, 2010, 23: 1221–1228

    Google Scholar 

  8. Markert B A, Breure A M, Zechmeister H G. Bioindicators and Biomonitors: Principles, Concepts, and Applications. Amsterdam: Elsevier, 2003

    Google Scholar 

  9. Aardema M J, MacGregor J T. Toxicology and genetic toxicology in the new era of “toxicogenomics”: Impact of “-omics” technologies. Mutat Res—Fund Mol M, 2002, 499: 13–25

    Article  Google Scholar 

  10. Neumann N F, Galvez F. DNA microarrays and toxicogenomics: Applications for ecotoxicology. Biotechnol Adv, 2002, 20: 391–419

    Article  Google Scholar 

  11. Pennie W, Pettit S D, Lord P G. Toxicogenomics in risk assessment: An overview of an HESI collaborative research program. Environ Health Perspect, 2004, 112: 417–419

    Article  Google Scholar 

  12. Thomas R S, Rank D R, Penn S G, et al. Identification of toxicologically predictive gene sets using cDNA microarrays. Mol Pharmacol, 2001, 60: 1189–1194

    Google Scholar 

  13. Snell T W, Brogdon S E, Morgan M B. Gene expression profiling in ecotoxicology. Ecotoxicology, 2003, 12: 475–483

    Article  Google Scholar 

  14. Bartosiewicz M, Penn S, Buckpitt A. Applications of gene arrays in environmental toxicology: Fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene. Environ Health Perspect, 2001, 109: 71–74

    Article  Google Scholar 

  15. Forbes V E, Palmqvist A, Bach L. The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem, 2006, 25: 272–280

    Article  Google Scholar 

  16. Menzel R, Swain S C, Hoess S, et al. Gene expression profiling to characterize sediment toxicity—A pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics, 2009, 10: 160–174

    Article  Google Scholar 

  17. Fedorenkova A, vonk J A, Lenders H J R, et al. Ecotoxicogenomics: Bridging the gap between genes and populations. Environ Sci Technol, 2010, 44: 4328–4333

    Article  Google Scholar 

  18. Van Straalen N M, Roelofs D, Van Gestel C A M, et al. Comment on “Ecotoxicogenomics: Bridging the gap between genes and populations”. Environ Sci Technol, 2010, 44: 9239–9240

    Article  Google Scholar 

  19. Awkerman J A, Raimondo S, Barron M G. Development of species sensitivity distributions for wildlife using interspecies toxicity correlation models. Environ Sci Technol, 2008, 42: 3447–3452

    Article  Google Scholar 

  20. Yu T, Miu Y, Wan M, et al. Expression of metallothionein gene induced by cadmium and copper in Tetrahymena thermophila (in Chinese). Acta Zool Sin, 2005, 51: 1115–1121

    Google Scholar 

  21. Lee K W, Raisuddin S, Rhee J S, et al. Expression of glutathione S-transferase (GST) genes in the marine copepod Tigriopus japonicus exposed to trace metals. Aqua Toxicol, 2008, 89: 158–166

    Article  Google Scholar 

  22. Connon R, Hooper H L, Sibly R M, et al. Linking molecular and population stress responses in Daphnia magna exposed to cadmium. Environ Sci Technol, 2008, 42: 2181–2188

    Article  Google Scholar 

  23. Lee S M, Lee S B, Park C H, et al. Expression of heat shock protein and hemoglobin genes in Chironomus tentans (Diptera, chironomidae) larvae exposed to various environmental pollutants: A potential biomarker of freshwater monitoring. Chemosphere, 2006, 65: 1074–1081

    Article  Google Scholar 

  24. Chan M K, Othman R, Zubir D, et al. Induction of a putative metallothionein gene in the blood cockle, Anadara granosa, exposed to cadmium. Comp Biochem Physiol C Toxicol Pharmacol, 2002, 131: 123–132

    Article  Google Scholar 

  25. Lemoine S, Bigot Y, Sellos D, et al. Metallothionein isoforms in Mytilus edulis (Mollusca, Bivalvia): Complementary DNA characterization and quantification of expression in different organs after exposure to cadmium, zinc, and copper. Mar Biotechnol (NY), 2000, 2: 195–203

    Google Scholar 

  26. Ivanina A V, Taylor C, Sokolova I M. Effects of elevated temperature and cadmium exposure on stress protein response in eastern oysters Crassostrea virginica (Gmelin). Aquat Toxicol, 2009, 91: 245–254

    Article  Google Scholar 

  27. Liu D, Ge F, Chen C, et al. Effects of heavy metals Cu and Cd on gene expression in liver tissue of Carassius auratus (in Chinese). J Fish Sci China, 2010, 17: 1243–1249

    Google Scholar 

  28. Williams T D, Diab A, Ortega F, et al. Transcriptomic responses of European flounder (Platichthys flesus) to model toxicants. Aquat Toxicol, 2008, 90: 83–91

    Article  Google Scholar 

  29. Reynders H, van der Ven K, Moens L N, et al. Patterns of gene expression in carp liver after exposure to a mixture of waterborne and dietary cadmium using a custom-made microarray. Aquat Toxicol, 2006, 80: 180–193

    Article  Google Scholar 

  30. Rhee J S, Raisuddin S, Hwang D S, et al. Differential expression of metallothionein (MT) gene by trace metals and endocrine-disrupting chemicals in the hermaphroditic mangrove killifish, Kryptolebias marmoratus. Ecotoxicol Environ Saf, 2009, 72: 206–212

    Article  Google Scholar 

  31. Woo S, Yum S, Park H S, et al. Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus). Comp Biochem Physiol C Toxicol Pharmacol, 2009, 149: 289–299

    Article  Google Scholar 

  32. Kim J H, Wang S Y, Kim I C, et al. Cloning of a river pufferfish (Takifugu obscurus) metallothionein cDNA and study of its induction profile in cadmium-exposed fish. Chemosphere, 2008, 71: 1251–1259

    Article  Google Scholar 

  33. Vergani L, Lanza C, Scarabelli L, et al. Heavy metal and growth hormone pathways in metallothionein regulation in fish RTH-149 cell line. Comp Biochem Physiol C Toxicol Pharmacol, 2009, 149: 572–580

    Article  Google Scholar 

  34. Zorita I, Bilbao E, Schad A, et al. Tissue- and cell-specific expression of metallothionein genes in cadmium- and copper-exposed mussels analyzed by in situ hybridization and RT-PCR. Toxicol Appl Pharmacol, 2007, 220: 186–196

    Article  Google Scholar 

  35. Sandrini J Z, Laurino J, Hatanaka T, et al. cDNA cloning and expression analysis of the catalytic subunit of glutamate cysteine ligase gene in an annelid polychaete after cadmium exposure: A potential tool for pollution biomonitoring. Comp Biochem Physiol C Toxicol Pharmacol, 2006, 143: 410–415

    Article  Google Scholar 

  36. Gonzalez P, Baudrimont M, Boudou A, et al. Comparative effects of direct cadmium contamination on gene expression in gills, liver, skeletal muscles and brain of the zebrafish (Danio rerio). Biometals, 2006, 19: 225–235

    Article  Google Scholar 

  37. Marie V, Gonzalez P, Baudrimont M, et al. Metallothionein gene expression and protein levels in triploid and diploid oysters Crassostrea gigas after exposure to cadmium and zinc. Environ Toxicol Chem, 2006, 25: 412–418

    Article  Google Scholar 

  38. Watenabe H, Takahashi E, Nakamura Y, et al. Development of a Daphnia magna DNA microarray for evaluation the toxicity of environmental chemicals. Environ Toxicol, 2007, 26: 669–676

    Article  Google Scholar 

  39. Ren F. Gene colning and copper-induced expression analysis of metallothionein-1for Eriocheir sinensis (In Chinese). East China Normal University, 2010

  40. Ki J S, Raisuddin S, Lee K W, et al. Gene expression profiling of copper-induced responses in the intertidal copepod Tigriopus japonicus using a 6K oligochip microarray. Aqua Toxicol, 2009, 93: 177–187

    Article  Google Scholar 

  41. Walker P A, Kille P, Hurley A, et al. An in vitro method to assess toxicity of waterborne metals to fish. Toxicol Appl Pharm, 2008, 230: 67–77

    Article  Google Scholar 

  42. Craig P M, Hogstrand C, Wood C M, et al. Gene expression endpoints following chronic waterborne copper exposure in a genomic model organism, the zebrafish, Danio rerio. Physiol Genomics, 2009, 40: 23–33

    Article  Google Scholar 

  43. Poynton H C, Varshavsky J R, Chang B, et al. Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ Sci Technol, 2007, 41: 1044–1050

    Article  Google Scholar 

  44. Compiling Committee of Monitoring and Analysis Methods for Water and Waste Water, SEPA. Monitoring and Analysis Methods for Water and Waste Water. 4th ed. Beijing: China Environmental Science Press, 2002

    Google Scholar 

  45. Magrini K D, Basu A, Spotila J R, et al. DNA microarrays detect effects of soil contamination on Arabidopsis thaliana gene expression.. Environ Toxicol Chem, 2008, 27: 2476–2487

    Article  Google Scholar 

  46. Roh J Y, Sim S J, Yi J, et al. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol, 2009, 43: 3933–3940

    Article  Google Scholar 

  47. Spurgeon D J, Ricketts H, Svendsen C, et al. Hierarchical responses of soil invertebrates (earthworms) to toxic metal stress. Environ Sci Technol, 2005, 39: 5327–5334

    Article  Google Scholar 

  48. Leeuwen L J V, Vermeire T G. Risk Assessment of Chemicals: An Introduction. 2nd ed. Heidelberg: Springer, 2007

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhengTao Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Z., Yang, N., Wang, X. et al. Preliminary analysis of species sensitivity distribution based on gene expression effect. Sci. China Earth Sci. 55, 907–913 (2012). https://doi.org/10.1007/s11430-012-4425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-012-4425-0

Keywords

Navigation