Skip to main content
Log in

U-Pb zircon geochronology and Hf isotope study of metamorphosed basic-ultrabasic rocks from metamorphic basement in southwestern Zhejiang: The response of the Cathaysia Block to Indosinian orogenic event

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

A combined study using LA-ICP-MS U-Pb dating, Hf isotopes, trace elements and the Ti-in-zircon geothermometer was carried out on zircons from the metamorphosed basic-ultrabasic rocks in the metamorphic basement of the Cathaysia Block, southwestern Zhejiang Province. The formation and metamorphic ages of the rocks from the metamorphic basement of the Cathaysia Block were determined based on zircon U-Pb geochronology. The age for the magmatic crystalline zircons from the protolith is about 1.85 Ga. The ε Hf (t) values of the older zircons were from −7 to −3, with two-stage model Hf ages (T LCDM2 ) of about 2.9 to 3.4 Ga, indicating that the source material was derived from anatexis and recycling of the Archean crust. The newly formed metamorphic zircons yielded U-Pb ages of 260–230 Ma. The metamorphic temperature calculated using the Ti-in-zircon geothermometer ranged from 610 to 720°C, consistent with the results from petrographic observations, indicating that the Cathaysia Block experienced an amphibolite facies metamorphism during the Indosinian. Results from this study provided an important timeframe for the tectonic evolution in South China and the Southeast Asia during the Late Permian and Early Triassic times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metcalfe I. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Aust J Earth Sci, 1996, 43(6): 605–623

    Article  Google Scholar 

  2. Li S G, Xiao Y L, Liou D L, et al. Collision of the North China and Yangtse blocks and formation of coesite-bearing eclogites: timing and processes. Chem Geol, 1993. 109(1–4): 89–111

    Article  Google Scholar 

  3. Hacker B R, Ratschbacher L, Webb L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planet Sci Lett, 1998, 161(1–4): 215–230

    Article  Google Scholar 

  4. Meng Q R, Zhang G W. Geologic framework and tectonic evolution of the Qinling Orogen, central China. Tectonophysics, 2000, 323(3–4): 183–196

    Article  Google Scholar 

  5. Chen S C, Wilson J L. Emplacement of the Longmen Shan thrust-nappe belt along the eastern margin of the Tibetan Plateau. J Struct Geol, 1996, 18(4): 413–430

    Article  Google Scholar 

  6. Roger F, Malavieille J, Leloup P H, et al. Timing of granite emplacement and cooling in the Songpan-Garze fold belt (eastern Tibetan Plateau) with tectonic implications. J Asian Earth Sci, 2004, 22(5): 465–481

    Article  Google Scholar 

  7. Harrowfield M J, Wilson C J L. Indosinian deformation of the Songpan Garze fold belt, northeast Tibetan Plateau. J Struct Geol, 2005, 27(1): 101–117

    Article  Google Scholar 

  8. Lepvrier C, Maluski H, Van T V, et al. The Early Triassic Indosinian Orogeny in Vietnam (Truong Son Belt and Kontum Massif): Implications for the geodynamic evolution of Indochina. Tectonophysics, 2004, 393(1–4): 87–118

    Article  Google Scholar 

  9. Lepvrier C, Maluski H, Nguyen V V, et al. Indosinian NW-trending shear zones within the Truong Son Belt (Vietnam): 40Ar/39Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics, 1997, 283(1–4): 105–127

    Article  Google Scholar 

  10. Carter A, Roques D, Bristow C, et al. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 2001, 29(3): 211–214

    Article  Google Scholar 

  11. Cui S Q, Li J R. On the Indosinian orogeny along the western Pacific coast areas of China. Acta Geol Sin (in Chinese), 1983, 62: 51–61

    Google Scholar 

  12. Li Z X, Li X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 2007, 35(2): 179–182

    Article  Google Scholar 

  13. Li X H, Li Z X, Li W X, et al. Initiation of the Indosinian Orogeny in south China: Evidence for a Permian magmatic are on Hainan Island. J Geol, 2006, 114(3): 341–353

    Article  Google Scholar 

  14. Wang Q, Li J W, Jian P, et al. Alkaline syenites in eastern Cathaysia (South China): Link to Permian-Triassic transtension. Earth Planet Sci Lett, 2005, 230(3–4): 339–354

    Article  Google Scholar 

  15. Li X H, Zhao J X, McCulloch M T, et al. Geochemical and Sm-Nd isotopic study of Neoproterozoic ophiolites from southeastern China; petrogenesis and tectonic implications. Precambrian Res, 1997, 81(1–2): 129–144

    Article  Google Scholar 

  16. Li Z X. Tectonic history of the major East Asian lithospheric blocks since the mid-Proterozoic: A synthesis. In: Flower M F J, et al, eds. Mantle Dynamics and Plate Interactions in East Asia. Washington, DC: Am Geophys Un, 1998. 221–243

    Google Scholar 

  17. Chen J F, Foland K A, Xing F M, et al. Magmatism along the southeast margin of the Yangtze Block; Precambrian collision of the Yangtze and Cathysia blocks of China. Geology, 1991, 19(8): 815–818

    Article  Google Scholar 

  18. Charvet, J, Shu L S, Shi Y S, et al. The building of South China; collision of Yangzi and Cathaysia blocks, problems and tentative answers. Aust J Earth Sci, 1996, 13(3–5): 223–235

    Google Scholar 

  19. Shu L S, Charvet J, Shi Y S, et al. Structural analysis of the Nanchang-Wanzai sinistral ductile shear zone (Jiangnan region, South China). Aust J Earth Sci, 1991, 6(1): 13–23

    Google Scholar 

  20. Wang Y J, Fan W M, Zhao G C, et al. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Res, 2007, 12(4): 404–416

    Article  Google Scholar 

  21. Chen A. Mirror-image thrusting in the South China orogenic belt: tectonic evidence from western Fujian, southeastern China. Tectonophysics, 1999, 305(4): 497–519

    Article  Google Scholar 

  22. Wang Y J, Zhang Y H, Fan W M, et al. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block. J Struct Geol, 2005, 27(6): 985–998

    Article  Google Scholar 

  23. Wang Y J, Zhang Y H, Fan W M, et al. Numerical modeling of the formation of Indo-Sinian peraluminous granitoids in Hunan Province: Basaltic underplating versus tectonic thickening. Sci China Ser D-Earth Sci, 2002, 45(11): 1042–1056

    Article  Google Scholar 

  24. Xu X S., O’Reilly S Y, Griffin W L, et al. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Res, 2007, 158: 51–78

    Article  Google Scholar 

  25. Lu F X, Sang L K. Petrology (in Chinese). Beijing: Geological Publishing House, 2002. 287

    Google Scholar 

  26. Hu X J, Xu J K, Tong Z X, et al. The Precambrian Geology of Southwestern Zhejiang Province (in Chinese). Beijing: Geological Publishing House, 1991. 1–278

    Google Scholar 

  27. Li X H, Wang Y X, Zhao Z H, et al. SHRIMP U-Pb zircon geochronology for amphibolite from the precanbrian basement in SW Zhejiang and NW Fujian Provinces. Geochimica, 1998, 27(4):327–334

    Google Scholar 

  28. Gan X C, Li H M, Sun D Z, et al. A geochronologicaI study on Early Proterozoic granitic rocks, southwestern Zhejiang. Acta Petrol Mineral (in Chinese), 1995, 14(1): 1–8

    Google Scholar 

  29. Gan X C, Li H M, Sun D Z. Single zircon U-Pb age and its geological significance of the “Hexi group”, southwestern Zhejiang Province. J Nanjing University (Earth Sciences) (in Chinese). 1993, 5(3): 361–364

    Google Scholar 

  30. Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geoanal Geostand Newsl, 2004, 28(3): 353–370

    Article  Google Scholar 

  31. Liu X M, Gao S, Diwu C R, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size. Chin Sci Bull, 2007, 52(9): 1257–1264

    Article  Google Scholar 

  32. Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol, 2002, 192(1–2): 59–79

    Article  Google Scholar 

  33. Ludwig K R. User’s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication No. 4, 2003, 25–32

  34. De Bievre, Taylor P D P. Table of the isotopic compositions of the elements. Int J Mass Spectrom, 1993, 123(2): 149–166

    Article  Google Scholar 

  35. Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 2006, 34(9): 745–748

    Article  Google Scholar 

  36. Scherer E, Muenker K C, Mezger K. Calibration of the lutetium-hafnium clock. Science, 2001. 293(5530): 683–687

    Article  Google Scholar 

  37. Blichert-Toft J, Albarede F. the Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett, 1997, 148(1–2): 243–258

    Article  Google Scholar 

  38. Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle; Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta, 1999, 63(3–4): 533–556

    Article  Google Scholar 

  39. Amelin Y, Lee D C, Halliday A N. Early-middle archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochim Cosmochim Acta, 2000, 64(24): 4205–4225

    Article  Google Scholar 

  40. Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 2002, 61(3–4): 237–269

    Article  Google Scholar 

  41. Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol, 2002, 184(1–2): 123–138

    Article  Google Scholar 

  42. Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age. Chin Sci Bull, 2004, 49(16): 1554–1569

    Article  Google Scholar 

  43. Sun W D, Williams I S, Li S G. Carboniferous and Triassic eclogites in the western Dabie Mountains, east-central China: evidence for protracted convergence of the North and South China Blocks. J Metamorph Geol, 2002, 20(9): 873–886

    Article  Google Scholar 

  44. Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 2005, 308(5723): 841–844

    Article  Google Scholar 

  45. Bea F, Montero P G, Gonzalez-Lodeiro F, et al. Zircon thermometry and U-Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo anatectic complex, central Iberia. J Geol Soc London, 2006, 163(5): 847–855

    Article  Google Scholar 

  46. Baldwin J A, Brown M, Schmitz M D. First application of titanium-in-zircon thermometry to ultrahigh-temperature metamorphism. Geology, 2007, 35(4): 295–298

    Article  Google Scholar 

  47. Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem Geol, 2006, 231: 135–158

    Article  Google Scholar 

  48. Yu J H, O’Reilly Y S, Wang L J, et al. Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crust. Chin Sci Bull, 2007, 52(1): 13–22

    Article  Google Scholar 

  49. Chung S L, Lo C H, Lan C Y, et al. Collision between the Indochina and South China blocks in the Early Triassic: Implications for the Indosinian Orogeny and closure of eastern Paleotethys. Eos (Trans, Am Geophys Union), 1999, 80(46): 1043

    Google Scholar 

  50. Ames L, Tilton G R, Zhou G. Timing of collision of the Sino-Korean and Yangtse cratons: U-Pb zircon dating of coesite-bearing eclogites. Geology, 1993, 21: 339–342

    Article  Google Scholar 

  51. Jahn B M. Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen: Implications for continental subduction and collisional tectonics. In: Hacker B R, Liou J G, eds. When Continental Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Netherlands: Kluwer Academic Publishers, 1998. 203–239

    Google Scholar 

  52. Zheng J P, Griffin W L, O’Reilly S Y, et al. Zircons in mantle xenoliths record the Triassic Yangtze-North China continental collision. Earth Planet Sci Lett, 2006, 247(1–2): 130–142

    Article  Google Scholar 

  53. Oh C W, Kim S W, Williams I S. Spinel granulite in Odesan area, South Korea: Tectonic implications for the collision between the North and South China blocks. Lithos, 2006, 92(3–4): 557–575

    Article  Google Scholar 

  54. Huang J Q, Ren J S, Jiang C F, et al. Tectonics and Evolution of China (in Chinese). Beijing: Science Press, 1980. 124

    Google Scholar 

  55. Hsü K J, Sun S, Li J L, et al. Mesozoic overthrust tectonics in South China. Geology, 1988, 16(5): 418–421

    Article  Google Scholar 

  56. Hsü K J, Sun S, Li J L, et al. Reply to comment on Mesozoic overthrust tectonics in South China. Geology, 1989, 17(4): 386–387

    Google Scholar 

  57. Hsü K J, Li J L, Chen H H, et al. Tectonics of South China: Key to understanding West Pacific geology. Tectonophysics, 1990, 183(1–4): 9–39

    Article  Google Scholar 

  58. Rowley D B, Ziegler A M, Nie G. Comment on “Mesozoic overthrust tectonics in south China”. Geology, 1989, 17(4): 384–386

    Article  Google Scholar 

  59. Charvet J, Lapierre H, Yu Y W. Geodynamic significance of the Mesozoic volcanism of southeastern China. Aust J Earth Sci, 1994, 9(4): 387–396

    Google Scholar 

  60. Zhao X, Coe R S, Gilder S A, et al. Palaeomagnetic constraints on the palaeogeography of China: Implications for Gondwanaland. Aust J Earth Sci, 1996, 43(6): 643–672

    Article  Google Scholar 

  61. Xiao W J. The early Mesozoic collapse of the late Paleozoic archipelago in South China. In: Sun S, Li J, et al, eds. Paradoxes in Geology. Amsterdam: Elsevier Science BV, 2001. 15–37

    Chapter  Google Scholar 

  62. Rodgers J. Comment on “Mesozoic overthrust tectonics in south China”. Geology, 1989, 17(7): 671–672

    Google Scholar 

  63. Li X H, McCulloch M T. Secular variation in the Nd isotopic composition of Neoproterozoic sediments from the southern margin of the Yangtze Block; evidence for a Proterozoic continental collision in Southeast China. Precambrian Res, 1996, 76(1–2): 67–76

    Article  Google Scholar 

  64. Gilder S A, Gill J B, Coe R S, et al. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China. J Geophys Res, 1996, 101(B7): 16137–16155

    Article  Google Scholar 

  65. Jahn B M, Chi W R, Yui T F. A Late Permian formation of Taiwan: Pb-Pb isochron and Sr isotopic evidence, and its regional geological significance. Geol Soc China, Taipei. 1992, 193–218

  66. Xiao W J, He H Q. Early Mesozoic thrust tectonics of the northwest Zhejiang region (Southeast China). GSA Bull, 2005, 117(7–8): 945–961

    Article  Google Scholar 

  67. Liu B J, Xu X S. Atlas of Lithofacies and Paleogeography of South China (in Chinese). Beijing: Science Press, 1994. 1–188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 40372094), the Opening Foundation of State Key Laboratory of Continental Dynamics, Northwest University (Grant No. 06LCD12) and the project of Land and Resources Bureau of Zhejiang Province (Grant No. 2004005)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, H., Zhang, L., Zhou, H. et al. U-Pb zircon geochronology and Hf isotope study of metamorphosed basic-ultrabasic rocks from metamorphic basement in southwestern Zhejiang: The response of the Cathaysia Block to Indosinian orogenic event. Sci. China Ser. D-Earth Sci. 51, 788–800 (2008). https://doi.org/10.1007/s11430-008-0053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-008-0053-0

Keywords

Navigation