Skip to main content
Log in

The response of the early developmental stages of Laminaria japonica to enhanced ultraviolet-B radiation

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The responses of the early development of Laminaria japonica collected from Kiaochow Bay in China to enhanced ultraviolet-B radiation (UV-B, 280–320 nm) were studied in the laboratory. The low UV-B radiations (11.7–23.4 J·m−2·d−1) had no significant effects on zoospores attachment, but when the UV-B dose > 35.1 J·m−2·d−1 the attachment decreased significantly compared with the control. Germination of embryospores was >93% under the low (11.7–35.1 J·m−2·d−1) doses, and in the range of 78.5%–88.5% under the high (46.8–70.2 J·m−2·d−1) UV-B doses, indicating a significant radiation effect. Under the higher UV-B exposure (35.1–70.2 J·m−2·d−1), all of the few gametophytes formed from embryospores died 120 h post-release. After exposure to the low UV-B radiation (11.7–23.4 J·m−2·d−1), the formation of sporophytes decreased and the female gametophyte clones increased compared with the control. However, the sex ratio and the relative growth of female gametophytes/sporophytes had not significantly changed. According to the results, enhanced UV-B radiation has a significant effect on the early development of L. japonica under laboratory conditions, suggesting that the UV-B radiation could not be overlooked as one of the important environmental factors influencing the ontogeny of macroalgae living in marine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crutzen P J. Ultraviolet on the increase. Nature, 1992, 356: 104–105, 10.1038/356104a0

    Article  Google Scholar 

  2. Bouchcr N P, Prezelin B B. Spectral modeling of UV inhibition of in Situ Antarctic primary production using a field-derived biological weighting function. Photochem Photobiol, 1996, 63: 407–418, 10.1111/j.1751-1097.1996.tb03085.x

    Article  Google Scholar 

  3. Smith R C, Prezelin B B, Baker K S, et a1. Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic water. Science, 1992, 225: 952–959, 10.1126/science.1546292

    Article  Google Scholar 

  4. Franklin L A, Forster R M. The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol, 1997, 32(3): 207–232

    Google Scholar 

  5. Häder D -P, Kumar H D, Smith R C, et al. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci, 2007, 6: 267–285, 17344962, 10.1039/b700020k, 1:CAS:528:DC%2BD2sXisV2nt7g%3D

    Article  PubMed  Google Scholar 

  6. Helbling E W, Ballaré C L, Villafaňe V E. In this Special Issue: Impacts of ultraviolet radiation on aquatic and terrestrial ecosystems. J Photochem Photobiol, 2001, 62(1): 7–9

    Google Scholar 

  7. Wängberg S -Å, Selmer J -S, Ekelund N G A, et al. Effects of increased UV-B radiation on Nordic marine ecosystem - a literature review. Nordic Council of Ministers TemaNord 515. 1996

  8. Hanelt D. Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol, 1998, 131(2): 361–369, 10.1007/s002270050329

    Article  Google Scholar 

  9. Van de Poll W H, Eggert A, Buma, A G J, et al. Effects of UV-B-induced DNA damage and photoinhibition on growth of temperate marine red macrophytes: habitat-related differences in UV-B tolerance. J Phycol, 2001, 37(1): 30–37, 10.1046/j.1529-8817.2001.037001030.x

    Article  Google Scholar 

  10. Dring M J, Makarov V, Schoschina E, et al. Influence of ultraviolet radiation on chlorophyll fluorescence and growth in different life history stages of three species of Laminaria (Phaeophyta). Mar Biol, 1996, 126: 183–191, 10.1007/BF00347443, 1:CAS:528:DyaK28XmtVOjsLg%3D

    Article  CAS  Google Scholar 

  11. Garman G D, Pillai M C, Goff J, et al. Nuclear events during early development in gametophytes of Macrocystis pyrifera, and the temporal effects of marine contaminant. Mar Biol, 1994, 121: 355–362, 10.1007/BF00346745

    Article  Google Scholar 

  12. Hanelt D, Wiencke C, Karsten U, et al. Photoinhibition and recovery after high light stress in different development and life history stages of Laminaria saccharina (Phaeophyta). J Phycol, 1997, 33: 387–395, 10.1111/j.0022-3646.1997.00387.x

    Article  Google Scholar 

  13. Coelho S M, Rijstenbil J W, Brown M T. Impacts of anthropogenic stresses on the early development stages of seaweeds. J Aquat Ecosyst Stress Recovery, 2000, 7: 317–333, 10.1023/A:1009916129009, 1:CAS:528:DC%2BD3MXhtlGgug%3D%3D

    Article  CAS  Google Scholar 

  14. Edding M E, Tala F. Development of techniques for the cultivation of Lessonia trabeculata Villouta et Santelices (Phaeophyceae: Laminariales) in Chile. Aquac Res, 2003, 34: 507–515, 10.1046/j.1365-2109.2003.00827.x

    Article  Google Scholar 

  15. Yabe K, Makino M, Suzuki M. Growth inhibition on gametogenesis of Laminaria religiosa induced by UV-B radiation. Fish Sci, 1997, 63: 668–670, 1:CAS:528:DyaK2sXntVGrsLo%3D

    CAS  Google Scholar 

  16. Wiencke C, Gómez I, Pakker H, et al. Impact of UV-radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: implications for depth zonation. Mar Ecol Prog Ser, 2000, 197: 217–229, 10.3354/meps197217

    Article  Google Scholar 

  17. Altamirano M, Flores-Moya A, Kuhlenkamp R, et al. Stage-dependent sensitivity to ultraviolet radiation in zygotes of the brown alga Fucus serratus. Zygote, 2003, 11(2): 101–106, 12828409, 10.1017/S0967199403002132, 1:CAS:528:DC%2BD3sXktlOiurg%3D

    Article  PubMed  CAS  Google Scholar 

  18. Schönwälder M E A, Wiencke C, Clayton M N, et al. The effect of elevated UV radiation on Fucus spp. (Fucales, Phaeophyta) zygote and embryo development. Plant Biol. 2003, 5(4): 366–377, 10.1055/s-2003-42716

    Article  Google Scholar 

  19. Roleda M Y, Wiencke C, Hanelt D, et al. Sensitivity of Laminariales zoospores from Helgoland (North Sea) to ultraviolet and photosynthetically active radiation: implications for depth distribution and seasonal reproduction. Plant Cell Environ, 2005, 28: 466–479, 10.1111/j.1365-3040.2005.01288.x

    Article  Google Scholar 

  20. Swanson A K, Druehl L D. Differential meiospore size and tolerance of ultraviolet light stress within and among kelp species along a depth gradient. Mar Biol, 2000, 136: 657–664, 10.1007/s002270050725

    Article  Google Scholar 

  21. Huovinen P, Oikar A, Soimasuo M, et al. Impact of UV radiation on the early development of the giant kelp (Macrocystis pyrifera) gametophytes. Photochem Photobiol, 2000, 72: 308–314, 10989599, 10.1562/0031-8655(2000)072<0308:IOUROT>2.0.CO;2, 1:CAS:528:DC%2BD3cXmsVOru7g%3D

    Article  PubMed  CAS  Google Scholar 

  22. Makarov M, Voskoboinikov G. The influence of ultraviolet-B radiation on spore release and growth of the kelp Laminaria saccharina. Bot Mar, 2001, 44: 89–94, 10.1515/BOT.2001.012

    Article  Google Scholar 

  23. Starr R, Zeikus J. UTEX - the culture collection of algae at the University of Texas at Austin. J Phycol, 1993, 29:1–106, 10.1111/j.0022-3646.1993.00001.x

    Article  Google Scholar 

  24. Lignel A, Pedersén M. Agar composition as a function of morphology and growth rate. Studies on some morphological strains of Gracilaria secundata and Gracilaria verrucosa (Rhodophyta). Bot Mar, 1989, 32: 219–227, 10.1515/botm.1989.32.3.219

    Google Scholar 

  25. SPSS Inc, 1999. Release 13.0 Version for Windows.

  26. Navarro N P, Mansilla A, Palacios M. UVB effects on early development stages of commercially important macroalgae in southern Chile. J Appl Phycol, 2007, DOI: 10.1007/s 10811-007-9276-2

  27. Makarov V N. The behaviour of zoospores and early ontogenic stages in the kelp Laminaria saccharina (L.) Lamour in the White and the Barents Seas. Doctor Dissertation. Leningrad: Russian Academy of Sciences, 1987

    Google Scholar 

  28. Furgal J A, Smith R E H. Ultraviolet radiation and photosynthesis by Georgian Bay phytoplankton of varying nutrient and photoadaptive. Can J Fish Aquat Sci, 1997, 54(7): 1659–1667, 10.1139/cjfas-54-7-1659

    Article  Google Scholar 

  29. Reed D, Amsler C, Ebeling A. Dispersal in kelps: Factors affecting spore swimming and competency. Ecology, 1992, 73: 1577–1585, 10.2307/1940011

    Article  Google Scholar 

  30. Makarov M V, Voskoboinikov G M. The influence of Ultraviolet-B radiation on spore release and growth of kelp Laminaria saccharina. Botanica Marina 2001, 44: 89–94, 10.1515/BOT.2001.012

    Article  Google Scholar 

  31. Voskoboinikov G M, Kamnev A N. Morphofunctional changes of the chloroplasts during the seaweed ontogenesis. Nauka, Leningrad, 1991, 96 pp.

    Google Scholar 

  32. Véliz K, Edding M, Tala F, et al. Effects of ultraviolet radiation on different life cycle stages of the south Pacific kelps, Lessonia nigrescens and Lessonia trabeculata (Laminariales, Phaeophyceae). Mar Biol, 2006, 149(5): 1015–1024, 10.1007/s00227-006-0301-9, 1:CAS:528:DC%2BD28XptVGqu7g%3D

    Article  Google Scholar 

  33. Lüning K, Critical levels of light and temperature regulating the gametogenesis of three Laminaria species (Phaeophyceae). J Phycol, 1980, 16: 1–15, 10.1111/j.1529-8817.1980.tb02992.x

    Article  Google Scholar 

  34. Montomara T, Sakai Y. Regulation of gametogenesis of Laminaria and Desmarestia (Phaeophyta) by iron and boron. Jpn J Phycol, 1984, 32: 209–215.

    Google Scholar 

  35. Lee J A, Brinkhuis B H. Effect of temperature and light on gametogenesis of Laminaria saccharina at its southern limit of distribution in the Western Atlantic. Ocean J Phycol 1988, 24: 181–191

    Article  Google Scholar 

  36. Lüning K, Neushul M. Light and temperature demands for growth and reproduction of Lamiarian gamtophytes in southern and central California. Mar Biol, 1978, 45: 297–309, 10.1007/BF00391816

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueXi Tang.

Additional information

Supported by the Program for New Century Excellent Talents in University (Grant No. NCET-05-0597) and National Natural Science Foundation of China (Grant No. 30270258)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Zhang, Q., Wang, Y. et al. The response of the early developmental stages of Laminaria japonica to enhanced ultraviolet-B radiation. SCI CHINA SER C 51, 1129–1136 (2008). https://doi.org/10.1007/s11427-008-0144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0144-3

Keywords

Navigation