Skip to main content
Log in

Noble metal-free catalysts for oxygen reduction reaction

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Developing noble metal-free catalysts with low cost, high performance and stability for oxygen reduction reaction (ORR) in fuel cells is of great interest to promote sustainable energy devices. In this review, we summarized noble metal-free catalysts for ORR, including non-noble metal-based and heteroatom-doped carbon nanomaterials. Mesoporous structure, homogeneous distribution of nanocrystals and synergistic effect of carbon base and nanocrystals/doped heteroatoms have great effect on the ORR property. The noble metal-free nanomaterials showed comparable catalytic property, better stability and methanol tolerance than commercial platinum (Pt)-based catalysts, showing great potential as substitutes for noble metal-based catalysts. In addition, the challenges and chances of developing noble metal-free ORR catalysts are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A. Nature, 2001, 414: 345–352

    Article  CAS  Google Scholar 

  2. Larminie J, Dicks A, McDonald MS. Fuel Cell Systems Explained. Chichester, UK: J Wiley, 2003

    Book  Google Scholar 

  3. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H. J Phys Chem B, 2004, 108: 17886–17892

    Article  CAS  Google Scholar 

  4. Morozan A, Jousselme B, Palacin S. Energ Environ Sci, 2011, 4: 1238–1254

    Article  CAS  Google Scholar 

  5. Vielstich W, Yokokawa H, Gasteiger HA. Handbook of Fuel Cells: Fundamentals Technology and Applications. Weinheim: John Wiley & Sons, 2009

    Google Scholar 

  6. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT. Appl Catal B-Environ, 2005, 56: 9–35

    Article  CAS  Google Scholar 

  7. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ. J Electroanal Chem, 2001, 495: 134–145

    Article  CAS  Google Scholar 

  8. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J. Chem Soc Rev, 2010, 39: 2184–2202

    Article  CAS  Google Scholar 

  9. Wang C, Daimon H, Lee Y, Kim J, Sun S. J Am Chem Soc, 2007, 129: 6974–6975

    Article  CAS  Google Scholar 

  10. Wang C, Daimon H, Onodera T, Koda T, Sun S. Angew Chem Int Ed, 2008, 47: 3588–3591

    Article  CAS  Google Scholar 

  11. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM. Science, 2007, 315: 493–497

    Article  CAS  Google Scholar 

  12. Huang X, Zhao Z, Cao L, Chen Y, Zhu E, Lin Z, Li M, Yan A, Zettl A, Wang YM, Duan X, Mueller T, Huang Y. Science, 2015, 348: 1230–1234

    Article  CAS  Google Scholar 

  13. He DS, He D, Wang J, Lin Y, Yin P, Hong X, Wu Y, Li Y. J Am Chem Soc, 2016, 138: 1494–1497

    Article  CAS  Google Scholar 

  14. Li M, Zhao Z, Cheng T, Fortunelli A, Chen CY, Yu R, Zhang Q, Gu L, Merinov BV, Lin Z, Zhu E, Yu T, Jia Q, Guo J, Zhang L, Goddard Iii WA, Huang Y, Duan X. Science, 2016, 354: 1414–1419

    Article  CAS  Google Scholar 

  15. Bu L, Zhang N, Guo S, Zhang X, Li J, Yao J, Wu T, Lu G, Ma JY, Su D, Huang X. Science, 2016, 354: 1410–1414

    Article  CAS  Google Scholar 

  16. Bu L, Guo S, Zhang X, Shen X, Su D, Lu G, Zhu X, Yao J, Guo J, Huang X. Nat Commun, 2016, 7: 11850

    Article  CAS  Google Scholar 

  17. Lefèvre M, Proietti E, Jaouen F, Dodelet JP. Science, 2009, 324: 71–74

    Article  CAS  Google Scholar 

  18. Wu G, More KL, Johnston CM, Zelenay P. Science, 2011, 332: 443–447

    Article  CAS  Google Scholar 

  19. Peng H, Mo Z, Liao S, Liang H, Yang L, Luo F, Song H, Zhong Y, Zhang B. Sci Rep, 2013, 3: 1765

    Article  CAS  Google Scholar 

  20. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Nat Mater, 2011, 10: 780–786

    Article  CAS  Google Scholar 

  21. Lee K, Zhang L, Lui H, Hui R, Shi Z, Zhang J. Electrochim Acta, 2009, 54: 4704–4711

    Article  CAS  Google Scholar 

  22. Easton EB, Yang R, Bonakdarpour A, Dahn JR. Electrochem Solid-State Lett, 2007, 10: B6

    Article  CAS  Google Scholar 

  23. Zhu H, Zhang S, Huang YX, Wu L, Sun S. Nano Lett, 2013, 13: 2947–2951

    Article  CAS  Google Scholar 

  24. Ponce J, Rehspringer JL, Poillerat G, Gautier JL. Electrochim Acta, 2001, 46: 3373–3380

    Article  CAS  Google Scholar 

  25. Yu D, Zhang Q, Dai L. J Am Chem Soc, 2010, 132: 15127–15129

    Article  CAS  Google Scholar 

  26. Yang DS, Bhattacharjya D, Inamdar S, Park J, Yu JS. J Am Chem Soc, 2012, 134: 16127–16130

    Article  CAS  Google Scholar 

  27. Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A, Zhang W, Zhu Z, Smith SC, Jaroniec M, Lu GQM, Qiao SZ. J Am Chem Soc, 2011, 133: 20116–20119

    Article  CAS  Google Scholar 

  28. Marković NM, Schmidt TJ, Stamenković V, Ross PN. Fuel Cells, 2001, 1: 105–116

    Article  Google Scholar 

  29. Wang JX, Inada H, Wu L, Zhu Y, Choi YM, Liu P, Zhou WP, Adzic RR. J Am Chem Soc, 2009, 131: 17298–17302

    Article  CAS  Google Scholar 

  30. Wu J, Yang H. Acc Chem Res, 2013, 46: 1848–1857

    Article  CAS  Google Scholar 

  31. Holade Y, Sahin N, Servat K, Napporn T, Kokoh K. Catalysts, 2015, 5: 310–348

    Article  CAS  Google Scholar 

  32. Lim DH, Wilcox J. J Phys Chem C, 2012, 116: 3653–3660

    Article  CAS  Google Scholar 

  33. Stacy J, Regmi YN, Leonard B, Fan M. Renew Sustain Energ Rev, 2017, 69: 401–414

    Article  CAS  Google Scholar 

  34. Bidault F, Brett DJL, Middleton PH, Brandon NP. J Power Sources, 2009, 187: 39–48

    Article  CAS  Google Scholar 

  35. Gloaguen F, Andolfatto F, Durand R, Ozil P. J Appl Electrochem, 1994, 24: 863–869

    Article  CAS  Google Scholar 

  36. Treimer S, Tang A, Johnson D. Electroanalysis, 2002, 14: 165

    Article  CAS  Google Scholar 

  37. Davis RE, Horvath GL, Tobias CW. Electrochim Acta, 1967, 12: 287–297

    Article  CAS  Google Scholar 

  38. Zhou X, Qiao J, Yang L, Zhang J. Adv Energ Mater, 2014, 4: 1301523

    Article  CAS  Google Scholar 

  39. Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Müllen K. J Am Chem Soc, 2012, 134: 9082–9085

    Article  CAS  Google Scholar 

  40. Guo S, Zhang S, Wu L, Sun S. Angew Chem, 2012, 124: 11940–11943

    Article  Google Scholar 

  41. Yin H, Zhang C, Liu F, Hou Y. Adv Funct Mater, 2014, 24: 2930–2937

    Article  CAS  Google Scholar 

  42. Chen J, Takanabe K, Ohnishi R, Lu D, Okada S, Hatasawa H, Morioka H, Antonietti M, Kubota J, Domen K. Chem Commun, 2010, 46: 7492–7494

    Article  CAS  Google Scholar 

  43. Youn DH, Bae G, Han S, Kim JY, Jang JW, Park H, Choi SH, Lee JS. J Mater Chem A, 2013, 1: 8007–8015

    Article  CAS  Google Scholar 

  44. Huang X, Yang Z, Dong B, Wang Y, Tang T, Hou Y. Nanoscale, 2017, 9: 8102–8106

    Article  CAS  Google Scholar 

  45. Liang HW, Wei W, Wu ZS, Feng X, Müllen K. J Am Chem Soc, 2013, 135: 16002–16005

    Article  CAS  Google Scholar 

  46. Hu Y, Jensen JO, Zhang W, Cleemann LN, Xing W, Bjerrum NJ, Li Q. Angew Chem Int Ed, 2014, 53: 3675–3679

    Article  CAS  Google Scholar 

  47. Chen M, Liu J, Zhou W, Lin J, Shen Z. Sci Rep, 2015, 5: 10389

    Article  Google Scholar 

  48. Zhong G, Wang H, Yu H, Peng F. J Power Sources, 2015, 286: 495–503

    Article  CAS  Google Scholar 

  49. Gorlin Y, Chung CJ, Nordlund D, Clemens BM, Jaramillo TF. ACS Catal, 2012, 2: 2687–2694

    Article  CAS  Google Scholar 

  50. Lin L, Zhu Q, Xu AW. J Am Chem Soc, 2014, 136: 11027–11033

    Article  CAS  Google Scholar 

  51. Li M, Bo X, Zhang Y, Han C, Nsabimana A, Guo L. J Mater Chem A, 2014, 2: 11672–11682

    Article  CAS  Google Scholar 

  52. Yin P, Yao T, Wu Y, Zheng L, Lin Y, Liu W, Ju H, Zhu J, Hong X, Deng Z, Zhou G, Wei S, Li Y. Angew Chem Int Ed, 2016, 55: 10800–10805

    Article  CAS  Google Scholar 

  53. Hou Y, Wen Z, Cui S, Ci S, Mao S, Chen J. Adv Funct Mater, 2015, 25: 872–882

    Article  CAS  Google Scholar 

  54. Ishihara A, Ohgi Y, Matsuzawa K, Mitsushima S, Ota K. Electrochim Acta, 2010, 55: 8005–8012

    Article  CAS  Google Scholar 

  55. Trasatti S. Electrochim Acta, 1984, 29: 1503–1512

    Article  CAS  Google Scholar 

  56. Green MA, Ho-Baillie A, Snaith HJ. Nat Photon, 2014, 8: 506–514

    Article  CAS  Google Scholar 

  57. Wang G, Xu T, Wen S, Pan M. Sci China Chem, 2015, 58: 871–878

    Article  CAS  Google Scholar 

  58. Goodenough JB, Manoharan R, Paranthaman M. J Am Chem Soc, 1990, 112: 2076–2082

    Article  CAS  Google Scholar 

  59. Bockris JOM. J Electrochem Soc, 1984, 131: 290–302

    Article  CAS  Google Scholar 

  60. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y. Nat Chem, 2011, 3: 546–550

    Article  CAS  Google Scholar 

  61. Rehman S, Tang T, Ali Z, Huang X, Hou Y. Small, 2017, 13: 1700087

    Article  CAS  Google Scholar 

  62. Chen S, Wang L, Wu Q, Li X, Zhao Y, Lai H, Yang L, Sun T, Li Y, Wang X, Hu Z. Sci China Chem, 2015, 58: 180–186

    Article  CAS  Google Scholar 

  63. Meng Y, Song W, Huang H, Ren Z, Chen SY, Suib SL. J Am Chem Soc, 2014, 136: 11452–11464

    Article  CAS  Google Scholar 

  64. Giordano C, Antonietti M. Nano Today, 2011, 6: 366–380

    Article  CAS  Google Scholar 

  65. Yang W, Rehman S, Chu X, Hou Y, Gao S. ChemNanoMat, 2015, 1: 376–398

    Article  CAS  Google Scholar 

  66. Ham DJ, Lee JS. Energies, 2009, 2: 873–899

    Article  CAS  Google Scholar 

  67. Mazza F, Trassatti S. J Electrochem Soc, 1963, 110: 847–849

    Article  CAS  Google Scholar 

  68. Jing S, Luo L, Yin S, Huang F, Jia Y, Wei Y, Sun Z, Zhao Y. Appl Catal B-Environ, 2014, 147: 897–903

    Article  CAS  Google Scholar 

  69. Dong Y, Li J. Chem Commun, 2015, 51: 572–575

    Article  CAS  Google Scholar 

  70. An L, Huang W, Zhang N, Chen X, Xia D. J Mater Chem A, 2014, 2: 62–65

    Article  CAS  Google Scholar 

  71. Qi J, Jiang L, Jiang Q, Wang S, Sun G. J Phys Chem C, 2010, 114: 18159–18166

    Article  CAS  Google Scholar 

  72. Xia D, Liu S, Wang Z, Chen G, Zhang L, Zhang L, Hui SR, Zhang J. J Power Sources, 2008, 177: 296–302

    Article  CAS  Google Scholar 

  73. Zhong H, Zhang H, Liang Y, Zhang J, Wang M, Wang X. J Power Sources, 2007, 164: 572–577

    Article  CAS  Google Scholar 

  74. Zhang K, Zhang L, Chen X, He X, Wang X, Dong S, Han P, Zhang C, Wang S, Gu L, Cui G. J Phys Chem C, 2013, 117: 858–865

    Article  CAS  Google Scholar 

  75. Tan S, Wang L, Saha S, Fushimi RR, Li D. ACS Appl Mater Interfaces, 2017, 9: 9815–9822

    Article  CAS  Google Scholar 

  76. Yin S, Cai M, Wang C, Shen PK. Energ Environ Sci, 2011, 4: 558–563

    Article  CAS  Google Scholar 

  77. Huang T, Yu J, Han J, Zhang Z, Xing Y, Wen C, Wu X, Zhang Y. J Power Sources, 2015, 300: 483–490

    Article  CAS  Google Scholar 

  78. Deng D, Yu L, Chen X, Wang G, Jin L, Pan X, Deng J, Sun G, Bao X. Angew Chem Int Ed, 2013, 52: 371–375

    Article  CAS  Google Scholar 

  79. Wen Z, Ci S, Zhang F, Feng X, Cui S, Mao S, Luo S, He Z, Chen J. Adv Mater, 2012, 24: 1399–1404

    Article  CAS  Google Scholar 

  80. Jasinski R. Nature, 1964, 201: 1212–1213

    Article  CAS  Google Scholar 

  81. Alt H, Binder H, Sandstede G. J Catal, 1973, 28: 8–19

    Article  CAS  Google Scholar 

  82. Jahnke H, Schönborn M, Zimmermann G. Organic dyestuffs as catalysts for fuel cells. In: Schäfer FP, Gerischer H, Willig F, Meier H, Jahnke H, Schönborn M, Zimmermann G, Eds. Physical and Chemical Applications of Dyestuffs. Berlin Heidelberg: Springer, 1976. 133–181

    Chapter  Google Scholar 

  83. Gupta S, Tryk D, Zecevic SK, Aldred W, Guo D, Savinell RF. J Appl Electrochem, 1998, 28: 673–682

    Article  CAS  Google Scholar 

  84. Li X, Popov BN, Kawahara T, Yanagi H. J Power Sources, 2011, 196: 1717–1722

    Article  CAS  Google Scholar 

  85. Koslowski UI, Abs-Wurmbach I, Fiechter S, Bogdanoff P. J Phys Chem C, 2008, 112: 15356–15366

    Article  CAS  Google Scholar 

  86. Van Der Putten A, Elzing A, Visscher W, Barendrecht E. J Electroanal Chem Interfacial Electrochem, 1986, 205: 233–244

    Article  Google Scholar 

  87. Yang W, Liu X, Yue X, Jia J, Guo S. J Am Chem Soc, 2015, 137: 1436–1439

    Article  CAS  Google Scholar 

  88. Bae IT, Tryk DA, Scherson DA. J Phys Chem B, 1998, 102: 4114–4117

    Article  CAS  Google Scholar 

  89. Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J, Miyata S. J Power Sources, 2009, 187: 93–97

    Article  CAS  Google Scholar 

  90. Zhang Y, Huang LB, Jiang WJ, Zhang X, Chen YY, Wei Z, Wan LJ, Hu JS. J Mater Chem A, 2016, 4: 7781–7787

    Article  CAS  Google Scholar 

  91. Jiang WJ, Gu L, Li L, Zhang Y, Zhang X, Zhang LJ, Wang JQ, Hu JS, Wei Z, Wan LJ. J Am Chem Soc, 2016, 138: 3570–3578

    Article  CAS  Google Scholar 

  92. Chung HT, Cullen DA, Higgins D, Sneed BT, Holby EF, More KL, Zelenay P. Science, 2017, 357: 479–484

    Article  CAS  Google Scholar 

  93. Osmieri L, Monteverde Videla AHA, Armandi M, Specchia S. Int J Hydrogen Energ, 2016, 41: 22570–22588

    Article  CAS  Google Scholar 

  94. Wu G, Santandreu A, Kellogg W, Gupta S, Ogoke O, Zhang H, Wang HL, Dai L. Nano Energ, 2016, 29: 83–110

    Article  CAS  Google Scholar 

  95. Shao M, Chang Q, Dodelet JP, Chenitz R. Chem Rev, 2016, 116: 3594–3657

    Article  CAS  Google Scholar 

  96. Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323: 760–764

    Article  CAS  Google Scholar 

  97. Zhang C, Mahmood N, Yin H, Liu F, Hou Y. Adv Mater, 2013, 25: 4932–4937

    Article  CAS  Google Scholar 

  98. Yang S, Zhi L, Tang K, Feng X, Maier J, Müllen K. Adv Funct Mater, 2012, 22: 3634–3640

    Article  CAS  Google Scholar 

  99. Fazio G, Ferrighi L, Di Valentin C. J Catal, 2014, 318: 203–210

    Article  CAS  Google Scholar 

  100. Zhang C, Hao R, Liao H, Hou Y. Nano Energ, 2013, 2: 88–97

    Article  CAS  Google Scholar 

  101. Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS. Energ Environ Sci, 2012, 5: 7936

    Article  CAS  Google Scholar 

  102. Chen P, Xiao TY, Qian YH, Li SS, Yu SH. Adv Mater, 2013, 25: 3192–3196

    Article  CAS  Google Scholar 

  103. Hu W, Wang Q, Wu S, Huang Y. J Mater Chem A, 2016, 4: 16920–16927

    Article  CAS  Google Scholar 

  104. Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z. Adv Mater, 2011, 23: 1020–1024

    Article  CAS  Google Scholar 

  105. Zhang L, Su Z, Jiang F, Yang L, Qian J, Zhou Y, Li W, Hong M. Nanoscale, 2014, 6: 6590–6602

    Article  CAS  Google Scholar 

  106. Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ. Angew Chem, 2013, 125: 3192–3198

    Article  Google Scholar 

  107. Zhang J, Qu L, Shi G, Liu J, Chen J, Dai L. Angew Chem, 2016, 128: 2270–2274

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the State key Project of Research and Development of China (2016YFA0200102, 2017YFA0206301), the National Natural Science Foundation of China (51590882, 51631001, 51672010), and NSFC-RGC Joint Research Scheme (51361165201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanglong Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Wang, Y., Li, W. et al. Noble metal-free catalysts for oxygen reduction reaction. Sci. China Chem. 60, 1494–1507 (2017). https://doi.org/10.1007/s11426-017-9153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9153-6

Keywords

Navigation