Skip to main content
Log in

Activated pyrolysed bacterial cellulose as electrodes for supercapacitors

  • Articles
  • SPECIAL TOPIC · Molecular Functional Materials and Applications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the bacterial celluloses (BCs) were pyrolysed in nitrogen and then activated by KOH to form a porous three-dimension-network electrode material for supercapacitor applications. Activated pyrolysed bacterial cellulose (APBC) samples with enlarged specific surface area and enhanced specific capacitances were obtained. In order to optimize electrochemical properties, APBC samples with different alkali-to-carbon ratios of 1, 2 and 3 were tested in two electrodes symmetrical capacitors. The optimized APBC sample holds the highest specific capacitance of 241.8 F/g, and the energy density of which is 5 times higher than that of PBC even at a current density of 5 A/g. This work presents a successful practice of preparing electrode material from environment-friendly biomass, bacterial cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang W. J Phys Chem C, 2012, 116: 13013–13019

    Article  CAS  Google Scholar 

  2. Wang H, Bian L, Zhou P, Tang J, Tang W. J Phys Chem A, 2012, 1: 578–584

    Google Scholar 

  3. Li Z, Zhang L, Amirkhiz BS, Tan X, Xu Z, Wang H, Olsen B, Holt C, Mitlin D. Adv Eng Mater, 2012, 2: 431–437

    Article  CAS  Google Scholar 

  4. Li Z, Xu Z, Tan X, Wang H, Holt C, Stephenson T, Olsen B, Mitlin D. Energy Environ Sci, 2013, 6: 871–878

    Article  CAS  Google Scholar 

  5. Wang Q, Cao Q, Wang XY, Jing B, Kuang H, Zhou L. J Power Sources, 2013, 225: 101–107

    Article  CAS  Google Scholar 

  6. Kim YJ, Abe Y, Yanaglura T, Park K, Shimizu M, Iwazaki T, Nakagawa S, Endo M, Dresselhaus M. Carbon, 2007, 45: 2116–2125

    Article  CAS  Google Scholar 

  7. Yun YS, Cho SY, Shim J, Kim B, Chang S, Baek S, Huh Y, Tak Y, Park Y, Park S, Jin H. Adv Mater, 2013, 25: 1993–1998

    Article  CAS  Google Scholar 

  8. Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q. ACS Appl Mater Interf, 2012, 4: 5800–5806

    Article  CAS  Google Scholar 

  9. Uchiyama S, Tamata M, Tofuku Y, Suzuki S. Anal Chim Acta, 1988, 208: 287–290

    Article  CAS  Google Scholar 

  10. Biswal M, Banerjee A, Deo M, Ogale S. Energy Environ Sci, 2013, 6: 1249–1259

    Article  CAS  Google Scholar 

  11. Rufford TE, Hulicova-Jurcakova D, Zhu Z, Lu GQ. Electrochem Commun, 2008, 10: 1594–1597

    Article  CAS  Google Scholar 

  12. Guo PZ, Ji QQ, Zhang LL, Zhao SY, Zhao XS. Acta Physico-Chimica Sinica, 2011, 27: 2836–2840

    CAS  Google Scholar 

  13. He X, Ling P, Qiu J, Yu M, Zhang X, Yu C, Zheng M. J Power Sources, 2013, 240: 109–113

    Article  CAS  Google Scholar 

  14. Valente Nabais JM, Teixeira JG, Almeida I. Bioresour Technol, 2011, 102: 2781–2787

    Article  CAS  Google Scholar 

  15. Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H. J Mater Chem A, 2013, 1: 6462–6470

    Article  CAS  Google Scholar 

  16. Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marín F, Moreno-Castilla C. Bioresour Technol, 2012, 111: 185–190

    Article  CAS  Google Scholar 

  17. Liu X, Zheng M, Xiao Y, Yang Y, Yang L, Liu Y, Lei B, Dong H, Zhang H, Fu H. ACS Appl Mater Interf, 2013, 5: 4667–4677

    Article  CAS  Google Scholar 

  18. Fan Z, Qi D, Xiao Y, Yan J, Wei T. Mater Lett, 2013, 101: 29–32

    Article  CAS  Google Scholar 

  19. Zhang L, Zhang F, Yang X, Leng K, Huang Y, Chen Y. Small, 2013, 9: 1342–1347

    Article  CAS  Google Scholar 

  20. Jonas R, Farah LF. Polym Degrad Stabil, 1998, 59: 101–106

    Article  CAS  Google Scholar 

  21. Chen LF, Huang ZH, Liang HW, Yao WT, Yu ZY, Yu SH. Energy Environ Sci, 2013, 6: 3331–3338

    Article  CAS  Google Scholar 

  22. Chen LF, Huang ZH, Liang HW, Guan Q, Yu S. Adv Mater, 2013, 25: 4746–4752

    Article  CAS  Google Scholar 

  23. Lee KY, Qian H, Tay FH, Blaker JJ, Kazarian SG, Bismarck A. J Mater Sci, 2013, 48: 367–376

    Article  CAS  Google Scholar 

  24. Yoon SH, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I. Carbon, 2004, 42: 1723–1729

    Article  CAS  Google Scholar 

  25. Wen ZB, Qu QT, Gao Q, Zheng X, Hu Z, Wu Y, Liu Y, Wang X. Electrochem Commun, 2009, 11: 715–718

    Article  CAS  Google Scholar 

  26. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S. Adv Mater, 2011, 23: 4828–4850

    Article  CAS  Google Scholar 

  27. Frackowiak E, Beguin F. Carbon, 2001, 39: 937–950

    Article  CAS  Google Scholar 

  28. Wang B, Li X, Luo B, Yang J, Wang X, Song Q, Chen S, Zhi L. Small, 2013, 9: 2399–2404

    Article  CAS  Google Scholar 

  29. Serilevy A, Avnir D. Langmuir, 1993, 9: 3067–3076

    Article  CAS  Google Scholar 

  30. Sing KSW. Adv Colloid Interface Sci, 1998, 76: 3–11

    Article  Google Scholar 

  31. Kotz R, Carlen M. Electrochim Acta, 2000, 45: 2483–2498

    Article  CAS  Google Scholar 

  32. Wang G, Zhang L, Zhang J. Chem Soc Rev, 2012, 41: 797–828

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Song or Linjie Zhi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Kong, D., Wang, B. et al. Activated pyrolysed bacterial cellulose as electrodes for supercapacitors. Sci. China Chem. 59, 713–718 (2016). https://doi.org/10.1007/s11426-016-5597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5597-9

Keywords

Navigation