Skip to main content
Log in

Unmodified and positively charged gold nanoparticles for sensitive colorimetric detection of folate receptor via terminal protection of small molecule-linked ssDNA

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The detection of protein/small molecule interactions plays important roles in drug discovery and protein/metabolite interactions in biology. In this work, by coupling the terminal protection of small molecule-linked ssDNA strategy with the unmodified and positively charged gold nanoparticle ((+)AuNP) nanoprobes, we have developed a sensitive and simple colorimetric sensor for the detection of folate receptor, a highly expressed protein in many kinds of malignant tumors. The target folate receptor binds the folate moieties of the folate-linked ssDNA through high affinity interactions and protects the protein-bound ssDNA from digestion by exonuclease I. The protected ssDNA thus adsorbs the ((+)AuNP) through electrostatic interactions, leading to a red-to-blue color change of the sensing solution for sensitive colorimetric detection of folate receptor at the sub-nanomolar level. Besides, this colorimetric sensor shows high selectivity toward folate receptor against other control proteins. The developed sensor avoids the modification/conjugation of the AuNP nanoprobes and the involvement of any expensive instruments for signal transduction in protein detection. Featured with these obvious advantages, the colorimetric sensor strategy demonstrated herein can be easily expanded for sensitive and convenient detection of various protein/small molecule interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu Z, Zhen Z, Jiang JH, Shen GL, Yu RQ. J Am Chem Soc, 2009, 131: 12325–12332

    Article  CAS  Google Scholar 

  2. Wu Z, Wang HQ, Guo M, Tang LJ, Yu RQ, Jiang JH. Anal Chem, 2011, 83: 3104–3111

    Article  CAS  Google Scholar 

  3. Wang Q, Jiang BY, Xie JQ, Xiang Y, Yuan R, Chai YQ. Analyst, 2013, 138: 5751–5756

    Article  CAS  Google Scholar 

  4. Wang GF, He XP, Wang L, Zhang XJ. Biosens Bioelectron, 2013, 42: 337–341

    Article  CAS  Google Scholar 

  5. Cao Y, Zhu S, Yu JC, Zhu XJ, Yin YM, Li GX. Anal Chem, 2012, 84: 4314–4320

    Article  CAS  Google Scholar 

  6. Holm J, Hansen SI, Hoier-Madsen M, Helkjaer PE, Zorek MB. APMIS, 1995, 103: 663–670

    Article  CAS  Google Scholar 

  7. Xie XJ, Xu W, Liu XG. Acc Chem Res, 2012, 45: 1511–1520

    Article  CAS  Google Scholar 

  8. Liu DB, Wang Z, Jiang XY. Nanoscale, 2011, 3: 1421–1433

    Article  CAS  Google Scholar 

  9. Kim HN, Ren WX, Kim JS, Yoon J. Chem Soc Rev, 2012, 41: 3210–3244

    Article  CAS  Google Scholar 

  10. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Science, 1997, 277: 1078–1081

    Article  CAS  Google Scholar 

  11. Akhlaghi Y, Kompany-Zareh M, Ebrahimi S. Sensor Actuat B, 2015, 221: 45–54

    Article  CAS  Google Scholar 

  12. Xu W, Xue XJ, Li TH, Zeng HQ, Liu XG. Angew Chem Int Ed, 2009, 48: 6849–6852

    Article  CAS  Google Scholar 

  13. Ou LJ, Jin PY, Chu X, Jiang JH, Yu RQ. Anal Chem, 2010, 82: 6015–6024

    Article  CAS  Google Scholar 

  14. Vantasin S, Pienpinijtham P, Wongravee K, Thammacharoen C, Ekgasit S. Sensor Actuat B, 2013, 177: 131–137

    Article  CAS  Google Scholar 

  15. Zhang HG, Li FY, Chen HL, Ma YH, Qi SD, Chen XG, Zhou L. Sensor Actuat B, 2015, 207: 748–755

    Article  CAS  Google Scholar 

  16. Liu JW, Mazumdar D, Lu Y. Angew Chem Int Ed, 2006, 45: 1–5

    Article  Google Scholar 

  17. Liu JW, Lu Y. J Am Chem Soc, 2005, 127: 12677–12683

    Article  CAS  Google Scholar 

  18. Chen BB, Wang ZB, Hu DX, Ma QQ, Huang LN, Xv CY, Guo ZY, Jiang XH. Sensor Actuat B, 2014, 200: 310–316

    Article  CAS  Google Scholar 

  19. Lou XH, Xiao Y, Wang Y, Mao HJ, Zhao JL. ChemBioChem, 2009, 10: 1973–1977

    Article  CAS  Google Scholar 

  20. Laromaine A, Koh L, Murugesan M, Ulijn RV, Stevens MM. J Am Chem Soc, 2007, 129: 4156–4157

    Article  CAS  Google Scholar 

  21. Liu JW, Lu Y. Angew Chem Int Ed, 2006, 118: 96–100

    Article  Google Scholar 

  22. Cao R, Li BX, Zhang YF, Zhang ZN. Chem Commun, 2011, 47: 12301–12303

    Article  CAS  Google Scholar 

  23. Su J, Zhou WJ, Xiang Y, Yuan R, Chai YQ. Chem Commun, 2013, 49: 7659–7661

    Article  CAS  Google Scholar 

  24. Liu JM, Chen JT, Yan XP. Anal Chem, 2013, 85: 3238–3245

    Article  CAS  Google Scholar 

  25. Niidome T, Nakashima K, Takahashi H, Niidome Y. Chem Commun, 2004, 17: 1978–1979

    Article  Google Scholar 

  26. Fahlman RP, Sen D. J Am Chem Soc, 2002, 124: 4610–4616

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingying Jiang or Shuo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, F., Jiang, B. et al. Unmodified and positively charged gold nanoparticles for sensitive colorimetric detection of folate receptor via terminal protection of small molecule-linked ssDNA. Sci. China Chem. 59, 770–775 (2016). https://doi.org/10.1007/s11426-016-5589-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5589-9

Keywords

Navigation