Skip to main content
Log in

Recent key developments in isotactic polypropylene in-reactor alloy and in-reactor nanocomposite technology

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Alloying and nanocompositing are two most effective techniques by which isotactic polypropylene (iPP), one of the most promising polymers of the 21st century, can be endowed with high performance for ever-demanding high-end applications. Thanks to the continuous advancement of catalyst technology, the technological trend for iPP alloy and nanocomposite fabrication has been projected to be in-reactor synthesis, the performance and economic advantages of which are beyond doubt. In this paper, we review two recent key developments in the iPP in-reactor alloy and in-reactor nanocomposite technology in our laboratory that will have profound influence on the continuing development of the prestigious iPP modification art. The first is the simultaneous EPR (ethylene-propylene random copolymer) cross-linking chemistry for controlling its physical growth pattern during in-reactor alloying, which helps to remove the compositional cap on EPR that so far greatly limits the iPP in-reactor alloying technique. The second is the nanofiller support fabrication strategy for simultaneously controlling both the phase morphology of the nanofiller dispersion and the polymer particle granule morphology of synthesized nanocomposites, which resolves the critical scale-up issue surrounding the iPP in-reactor nanocompositing technique. Based on these new developments, new advancements of iPP materials are envisaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang B, Long YY, Li YG, Men YF, Li YS. Polymer, 2015, 61: 108–114

    Article  Google Scholar 

  2. Zhang B, Dong Q, Fu Z, Fan Z. Polymer, 2015, 55: 4865–4872

    Article  Google Scholar 

  3. Passaglia E, Coiai S, Augier S. Prog Polymer Sci, 2009, 34: 911–947

    Article  CAS  Google Scholar 

  4. Galli P. Prog Polymer Sci, 1994, 19: 959–974

    Article  CAS  Google Scholar 

  5. Galeski A. Prog Polymer Sci, 2003, 28: 1643–1699

    Article  CAS  Google Scholar 

  6. Galli P, Vecellio G. Prog Polymer Sci, 2001, 26: 1287–1336

    Article  CAS  Google Scholar 

  7. Vaia RA, Wagner HD. Mater Today, 2004, 7: 32–37

    Article  CAS  Google Scholar 

  8. Prashantha K, Soulestin J, Lacrampe MF, Krawczak P. Polym Polym Compo, 2009, 17: 205–245

    CAS  Google Scholar 

  9. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS. Nature, 2006, 442: 282–286

    Article  CAS  Google Scholar 

  10. Byrne MT, Gun’ko YK. Adv Mater, 2010, 22: 1672–1688

    Article  CAS  Google Scholar 

  11. Vaia RA, Maguire JF. Chem Mater, 2007, 19: 2736–2751

    Article  CAS  Google Scholar 

  12. Garcés JM, Moll DJ, Bicerano J, Fibiger R, McLeod DG. Adv Mater, 2000, 12: 1835–1839

    Article  Google Scholar 

  13. Leuteritz A, Pospiech D, Kretzschmar B, Willeke M, Jehnichen D, Jentzsch U, Grundke K, Janke A. Adv Eng Mater, 2003, 5: 678–681

    Article  CAS  Google Scholar 

  14. Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC. Chem Mater, 2001, 13: 3516–3523

    Article  CAS  Google Scholar 

  15. Winey K, Vaia RA. Polymer Nanocomposites, MRS Bulletin. Pittsburgh, Pennsylvania, US: Materials Research Society, 2007

  16. Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Prog Polymer Sci, 2010, 35: 357–401

    Article  CAS  Google Scholar 

  17. Coleman JN, Khan U, Gun’ko YK. Adv Mater, 2006, 18: 689–706

    Article  CAS  Google Scholar 

  18. Kim H, Abdala AA, Macosko CW. Macromolecules, 2010, 43: 6515–6530

    Article  CAS  Google Scholar 

  19. Okamoto M. Polymer/Clay Nanocomposites. Stevenson Ranch, California, US: American Scientific Publishers, 2004

  20. Frankowski DJ, Khan SA, Spontak RJ. Adv Mater, 2007, 19: 1286–1290

    Article  CAS  Google Scholar 

  21. Sun L, Liu J, Kirumakki SR, Schwerdtfeger ED, Howell RJ, Al-Bahily K, Miller SA, Clearfield A, Sue HJ. Chem Mater, 2009, 21: 1154–1161

    Article  CAS  Google Scholar 

  22. He A, Hu H, Huang Y, Dong JY, Han CC. Macromol Rapid Comm, 2004, 25: 2008–2013

    Article  CAS  Google Scholar 

  23. Yang K, Huang Y, Dong JY. Polymer, 2007, 48: 6254–6261

    Article  CAS  Google Scholar 

  24. Guo N, Di Benedetto SA, Kwon DK, Wang L, Russell MT, Lanagan MT, Facchetti A, Marks TJ. J Am Chem Soc, 2007, 129: 766–767

    Article  CAS  Google Scholar 

  25. Koval’Chuk AA, Shchegolikhin AN, Shevchenko VG, Nedorezova PM, Klyamkina AN, Aladyshev AM. Macromolecules, 2008, 41: 3149–3156

    Article  Google Scholar 

  26. Park S, Yoon SW, Choi H, Lee JS, Cho WK, Kim J, Park HJ, Yun WS, Choi CH, Do Y, Choi IS. Chem Mater, 2008, 20: 4588–4594

    Article  CAS  Google Scholar 

  27. Toti A, Giambastiani G, Bianchini C, Meli A, Bredeau S, Dubois P, Bonduel D, Claes M. Chem Mater, 2008, 20: 3092–3098

    Article  CAS  Google Scholar 

  28. Koval’chuk AA, Shevchenko VG, Shchegolikhin AN, Nedorezova PM, Klyamkina AN, Aladyshev AM. Macromolecules, 2008, 41: 7536–7542

    Article  Google Scholar 

  29. Kim J, Hong SM, Kwak S, Seo Y. Phys Chem Chem Phys, 2009, 11: 10851–10859

    Article  CAS  Google Scholar 

  30. Huang Y, Qin Y, Zhou Y, Niu H, Yu ZZ, Dong JY. Chem Mater, 2010, 22: 4096–4102

    Article  CAS  Google Scholar 

  31. Shi J, Dong JY. Polymer, 2016, 85: 10–18

    Article  CAS  Google Scholar 

  32. Qin Y, Wang N, Zhou Y, Huang Y, Niu H, Dong JY. Macromol Rapid Comm, 2011, 32: 1052–1059

    Article  CAS  Google Scholar 

  33. Zhou Y, Niu H, Kong L, Zhao Y, Dong JY, Wang D. Polymer, 2009, 50: 4690–4695

    Article  CAS  Google Scholar 

  34. Dong C, Niu H, Dong JY. Appl Catal A-Gen, 2014, 484: 142–147

    Article  CAS  Google Scholar 

  35. Dong C, Niu H, Dong JY. Acta Polym Sin, 2014, 8: 1143–1152

    Google Scholar 

  36. Du J, Niu H, Dong JY, Dong X, Han CC. Adv Mater, 2008, 20: 2914–2917

    Article  CAS  Google Scholar 

  37. Du J, Niu H, Dong JY, Dong X, Wang D, He A, Han CC. Macromolecules, 2008, 41: 1421–1429

    Article  CAS  Google Scholar 

  38. Huang Y, Yang K, Dong JY. Macromol Rapid Comm, 2006, 27: 1278–1283

    Article  CAS  Google Scholar 

  39. Huang Y, Yang K, Dong JY. Polymer, 2007, 48: 4005–4014

    Article  CAS  Google Scholar 

  40. Huang Y, Qin Y, Wang N, Zhou Y, Niu H, Dong JY, Hu J, Wang Y. Macromol Chem Phys, 2012, 213: 720–728

    Article  CAS  Google Scholar 

  41. Dong JY, Liu Y. J Organomet Chem, 2015, 798: 311–316

    Article  CAS  Google Scholar 

  42. Liu Y, Wang N, Dong JY. Macromol Rapid Comm, 2015, 36: 1971–1978

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyong Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Qin, Y. Recent key developments in isotactic polypropylene in-reactor alloy and in-reactor nanocomposite technology. Sci. China Chem. 59, 1231–1239 (2016). https://doi.org/10.1007/s11426-016-0174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0174-3

Keywords

Navigation