Skip to main content
Log in

On the oxidation states of metal elements in MO3 - (M=V, Nb, Ta, Db, Pr, Gd, Pa) anions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Relativistic quantum chemistry investigations are carried out to tackle the puzzling oxidation state problem in a series of MO -3 trioxide anions of all d- and f-block elements with five valence electrons. We have shown here that while the oxidation states of V, Nb, Ta, Db, Pa are, as usual, all +V with divalent oxygen O(-II) in MO -3 anions, the lanthanide elements Pr and Gd cannot adopt such high +V oxidation state in similar trioxide anions. Instead, lanthanide element Gd retains its usual +III oxidation state, while Pr retains a +IV oxidation state, thus forcing oxygen into a non-innocent ligand with an uncommon monovalent radical (O) of oxidation state -I. A unique Pr - (O)3 biradical with highly delocalized unpairing electron density on Pr(IV) and three O atoms is found to be responsible for stabilizing the monovalent-oxygen species in PrO -3 ion, while GdO -3 ion is in fact an OGd+(O 2-2 ) complex with Gd(III). These results show that a naïve assignment of oxidation state of a chemical element without electronic structure analysis can lead to erroneous conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karen P, McArdle P, Takats J. Pure Appl Chem, 2014, 86: 1017–1081

    Article  CAS  Google Scholar 

  2. Malone LJ, Dolter T. Basic Concepts of Chemistry. Place Published: John Wiley & Sons, 2008

    Google Scholar 

  3. Solozhenko VL, Solozhenko EG, Lathe C. Solid State Commun, 2006, 137: 533–535

    Article  CAS  Google Scholar 

  4. Qiu YH, Hu HS, Chen G, Li J. Sci China Chem, 2014, 57: 426–434

    Article  CAS  Google Scholar 

  5. Riedel S, Kaupp M. Coord Chem Rev, 2009, 253: 606–625

    Article  CAS  Google Scholar 

  6. Gong Y, Zhou MF, Kaupp M, Riedel S. Angew Chem Int Ed, 2009, 48: 7879–7883

    Article  CAS  Google Scholar 

  7. Wang GJ, Zhou MF, Goettel JT, Schrobilgen JG, Su J, Li J, Schloeder T, Riedel S. Nature, 2014, 514: 475–477

    Article  CAS  Google Scholar 

  8. Xue ZL. Sci China Chem, 2015, 58: 4–5

    Article  CAS  Google Scholar 

  9. Pyykkö P, Xu WH. Angew Chem Int Ed, 2015, 54: 1080–1081

    Article  Google Scholar 

  10. Gong Y, Zhou MF, Andrews L. Chem Rev, 2009, 109: 6765–6808

    Article  CAS  Google Scholar 

  11. Adachi G, Imanaka N. Chem Rev, 1998, 98: 1479–1514

    Article  CAS  Google Scholar 

  12. Gibson JK, Marcalo J. Coord Chem Rev, 2006, 250: 776–783

    Article  CAS  Google Scholar 

  13. Kovacs A, Konings RJM, Gibson JK, Infante I, Gagliardi L. Chem–Rev, 2015, 115: 1725–1759

    CAS  Google Scholar 

  14. Li Y, Su J, Michell E, Zhang GQ, Li J. Sci China Chem, 2013, 56: 1671–1681

    Article  CAS  Google Scholar 

  15. Li J, Bursten BE, Liang B, Andrews L. Science, 2002, 295: 2242–2246

    Article  CAS  Google Scholar 

  16. Huang W, Xu WH, Su J, Schwarz WHE, Li J. Inorg Chem, 2013, 52: 14237–14245

    Article  CAS  Google Scholar 

  17. Nenajdenko VG, Shevchenko NE, Balenkova ES, Alabugin IV. Chem Rev, 2003, 103: 229–282

    Article  CAS  Google Scholar 

  18. Huber KP, Herzberg G. NIST Chemistry WebBook, NIST Standard–Reference Database Number 69. Secondary NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 2009

  19. Creighton JA, Lippincott ER. J Chem Phys, 1964, 40: 1779–1780

    Article  CAS  Google Scholar 

  20. Lopez N, Graham DJ, McGuire D, Alliger GE, Yang SH, Cummins CC, Nocera DG. Science, 2012, 335: 450–453

    Article  CAS  Google Scholar 

  21. Edwards AJ, Falconer WE, Griffiths JE, Sunder WA, Vasile MJ. J Chem Soc, Dalton Trans, 1974, 11: 1129–1133

    Article  Google Scholar 

  22. Cramer CJ, Tolman WB, Theopold KH, Rheingold AL. Proc Natl Acad Sci USA, 2003, 100: 3635–3640

    Article  CAS  Google Scholar 

  23. Pyykkö P, Runeberg N, Straka M, Dyall KG. Chem Phys Lett, 2000, 328: 415–419

    Article  Google Scholar 

  24. Xiao H, Hu HS, Schwarz WHE, Li J. J Phys Chem A, 2010, 114: 8837–8844

    Article  CAS  Google Scholar 

  25. Straka M, Dyall KG, Pyykkö P. Theor Chem Acc, 2001, 106: 393–403

    Article  CAS  Google Scholar 

  26. Huang W, Pyykkö P, Li J. Inorg Chem, 2015, 54: 8825–8831

    Article  CAS  Google Scholar 

  27. Zaitsevskii A, Schwarz WHE. Phys Chem Chem Phys, 2014, 16: 8997–9001

    Article  CAS  Google Scholar 

  28. Su J, Li WL, Lopez GV, Jian T, Cao GJ, Li WL, Schwarz WHE, Wang LS, Li J. J Phys Chem A, 2016, in press

    Google Scholar 

  29. Takao K, Tsushima S, Ogura T, Tsubomura T, Ikeda Y. Inorg Chem, 2014 53: 5772–5780

    Article  CAS  Google Scholar 

  30. Maurice R, Renault E, Gong Y, Rutkowski PX, Gibson JK. Inorg–Chem, 2015, 54: 2367–2373

    CAS  Google Scholar 

  31. Mikulas T, Chen M, Dixon DA, Peterson KA, Gong Y, Andrews L. Inorg Chem, 2014, 53: 446–456

    Article  CAS  Google Scholar 

  32. Hu HS, Wei F, Wang XF, Andrews L, Li J. J Am Chem Soc, 2014, 136: 1427–1437

    Article  CAS  Google Scholar 

  33. Willson SP, Andrews L. J Phys Chem A, 1999, 103: 3171–3183

    Article  CAS  Google Scholar 

  34. MacDonald MR, Bates JE, Ziller JW, Furche F, Evans WJ. J Am Chem Soc, 2013, 135: 9857–9868

    Article  CAS  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  36. Velde GT, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T. J Comput Chem, 2001, 22: 931–967

    Article  Google Scholar 

  37. van Lenthe E, Baerends EJ, Snijders JG. J Chem Phys, 1993, 99: 4597–4610

    Article  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Secondary Gaussian 09. Wallingford CT: Gaussian, Inc., 2009

    Google Scholar 

  39. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M. MOLPRO. Version 2012.1. A package of ab initio programs, 2012, http://www.molpro.net

    Google Scholar 

  40. Ghigo G, Roos BO, Malmqvist PA. Chem Phys Lett, 2004, 396: 142–149

    Article  CAS  Google Scholar 

  41. Zhou MF, Andrews L. J Phys Chem A, 1998, 102: 8251–8260

    Article  CAS  Google Scholar 

  42. Vyboishchikov SF, Sauer J. J Phys Chem A, 2000, 104: 10913–10922

    Article  CAS  Google Scholar 

  43. Pradhan K, Gutsev GL, Weatherford CA, Jena P. J Chem Phys, 2011, 134: 144305

    Article  Google Scholar 

  44. Ramondo F, Bencivenni L, Sanna N, Cesaro SN. Theochem, 1992, 253: 121–147

    Article  Google Scholar 

  45. Waters T, Wedd AG, O’Hair RAJ. Chem Eur J, 2007, 13: 8818–8829

    Article  CAS  Google Scholar 

  46. Jackson P, Fisher KJ, Willett GD. Int J Mass Spectrom, 2000, 197: 95–103

    Article  CAS  Google Scholar 

  47. Sambrano JR, Gracia L, Andres J, Berski S, Beltran A. J Phys Chem A, 2004, 108: 10850–10860

    Article  CAS  Google Scholar 

  48. Wu ZJ, Kawazoe Y, Meng J. Theochem, 2006, 764: 123–132

    Article  CAS  Google Scholar 

  49. Ziegler T, Rauk A. Theor Chem Acc, 1977, 46: 1–10

    Article  CAS  Google Scholar 

  50. Li J, Bursten BE. J Am Chem Soc, 1998, 120: 11456–11466

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingfei Zhou or Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Hu, S., Huang, W. et al. On the oxidation states of metal elements in MO3 - (M=V, Nb, Ta, Db, Pr, Gd, Pa) anions. Sci. China Chem. 59, 442–451 (2016). https://doi.org/10.1007/s11426-015-5481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5481-z

Keywords

Navigation