Skip to main content
Log in

The radius of gyration for a ternary self-condensing vinyl polymerization system

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A ternary self-condensing vinyl polymerization (SCVP) system consisting of monomers, inimers and core initiators is studied by the principle of statistical mechanics. Starting from partition functions for polymerization that constructed from two different viewpoints, explicit expressions of the size distribution function (SDF), equilibrium free energy, and the law of mass action are obtained. For two types of hyperbranched polymers (HBPs) formed in the system, the first, the second, and the third mean-square radii of gyration (MSRG) are presented under various conditions. Furthermore, the solvent effect and excluded volume effect are taken into account in the calculation of the MSRG. With these results, the effects of monomers, inimers and core initiators on the spatial dimension of HBPs are discussed. It is shown that the competition between polymers with and without a core in the growing process results in a significant influence on the average properties of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fréchet JMJ, Henmi M, Gitsov I, Aoshima S, Leduc MR, Bernard Grubbs R. Self-condensing vinyl polymerization: an asnroach to dendritic materials. Science, 1995, 269: 1080–1083

    Article  Google Scholar 

  2. Müller AHE, Yan DY, Wulkow M. Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 1. Molecular weight distribution. Macromolecules, 1997, 30: 7015–7023

    Google Scholar 

  3. Yan DY, Müller AHE, Matyjaszewski K. Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 2. Degree of branching. Macromolecules, 1997, 30: 7024–7033

    Article  CAS  Google Scholar 

  4. Litvinenko GI, Simon PFW, Müller AHE. Molecular parameters of hyperbranched copolymers obtained by self-condensing vinyl copolymerization. 1. Equal rate constants. Macromolecules, 1999, 32: 2410–2419

    Article  CAS  Google Scholar 

  5. Yan DY, Zhou ZP, Müller AHE. Molecular weight distribution of hyperbranched polymers generated by self-condensing vinyl polymerization in presence of a multifunctional initiator. Macromolecules, 1999, 32: 245–250

    Article  CAS  Google Scholar 

  6. Roos SG, Müller AHE, Matyjaszewski K. Copolymerization of n-butyl acrylate with methyl methacrylate and pmma macromonomers: comparison of reactivity ratios in conventional and atom transfer radical copolymerization. Macromolecules, 1999, 32: 8331–8335

    Google Scholar 

  7. Ambade AV, Kumar A. Controlling the degree of branching in vinyl polymerization. Prog Polym Sci, 2000, 25: 1141–1170

    Article  CAS  Google Scholar 

  8. Litvinenko GI, Simon PFW, Müller AHE. Molecular parameters of hyperbranched copolymers obtained by self-condensing vinyl copolymerization, 2. Non-equal rate constants. Macromolecules, 2001, 34: 2418–2426

    CAS  Google Scholar 

  9. He XH, Liang HJ, Pan CY. Monte carlo simulation of hyperbranched copolymerizations in the presence of a multifunctional initiator. Macromol Theory Simul, 2001, 10: 196–203

    Article  CAS  Google Scholar 

  10. Hong CY, Pan CY, Huang Y, Xu ZD. Synthesis of hyperbranched polymethacrylates in the presence of a tetrafunctional initiator. Polymer, 2001, 42: 6733–6740

    Article  CAS  Google Scholar 

  11. Hong CY, Pan CY. Synthesis and characterization of hyperbranched polyacrylates in the presence of a tetrafunctional initiator with higher reactivity than monomer by self-condensing vinyl polymerization. Polymer, 2001, 42: 9385–9391

    Article  CAS  Google Scholar 

  12. Cheng KC. Kinetic model of hyperbranched polymers formed by self-condensing vinyl polymerization of AB* monomers in the presence of multifunctional core molecules with different reactivities. Polymer, 2003, 44: 877–882

    Article  CAS  Google Scholar 

  13. Baskaran D. Hyperbranched polymers from divinylbenzene and 1,3-diisopropenylbenzene through anionic self-condensing vinyl polymerization. Polymer, 2003, 44: 2213–2220

    Article  CAS  Google Scholar 

  14. Gao C, Yan DY. Hyperbranched polymers: from synthesis to asnlications. Prog Polym Sci, 2004, 29: 183–275

    Article  CAS  Google Scholar 

  15. Cheng KC, Chuang TH, Chang JS, Guo J, Su WF. Effect of feed rate on structure of hyperbranched polymers formed by self-condensing vinyl polymerization in semibatch reactor. Macromolecules, 2005, 38: 8252–8257

    Article  CAS  Google Scholar 

  16. Muthukrishnan S, Erhard DP, Mori H, Müller AHE. Synthesis and characterization of surface-grafted hyperbranched glycomethacrylates. Macromolecules, 2006, 39: 2743–2750

    Article  CAS  Google Scholar 

  17. Zhou ZP, Yan DY. A general model for the kinetics of self-condensing vinyl polymerization. Macromolecules, 2008, 41: 4429–4434

    Article  CAS  Google Scholar 

  18. Zhou ZP, Yan DY. Effect of multifunctional initiator on selfcondensing vinyl polymerization with nonequal molar ratio of stimulus to monomer. Macromolecules, 2009, 42: 4047–4052

    Article  CAS  Google Scholar 

  19. Georgi U, Erber M, Stadermann J, Abulikemu M, Komber H, Lederer A, Voit B. New asnroaches to hyperbranched poly(4-chloromethylstyrene) and introduction of various functional end groups by polymer-analogous reactions. J Polym Sci Polym Chem, 2010, 48: 2224–2235

    Article  CAS  Google Scholar 

  20. Liu XH, Bao YM, Tang XL, Li YS. Synthesis of hyperbranched polymers via a facile self-condensing vinyl polymerization system— glycidyl methacrylate/Cp2TiCl2/Zn. Polymer, 2010, 51: 2857–2863

    Article  CAS  Google Scholar 

  21. Liu XH, Dong ZM, Tang XL, Li YS. Synthesis and characterization of hyperbranched polymers via Cp2TiCl-catalyzed self-condensing vinyl polymerization using glycidyl methacrylate as inimer. Polymer, 2010, 51: 854–859

    Article  CAS  Google Scholar 

  22. Cheng KC, Su YY, Chuang TH, Guo WJ, Su WF. Kinetic model of hyperbranched polymers formed by self-condensing vinyl or selfcondensing ring-opening polymerization of AB monomers activated by stimuli with different reactivities. Macromolecules, 2010, 43: 8965–8970

    Article  CAS  Google Scholar 

  23. Zhao ZF, Wang HJ, Ba XW. A statistical theory for self-condensing vinyl polymerization. J Chem Phys, 2009, 131: 074101

  24. Zhao ZF, Wang HJ, Ba XW. Statistical properties for the selfcondensing vinyl polymerization in presence of multifunctional core initiators. Polymer, 2011, 52: 854–865

    Article  CAS  Google Scholar 

  25. Gu F, Wang HJ, Zhao ZF. Statistical and thermodynamic properties of binary self-condensing vinyl polymerization. Sci China Chem, 2011, 54: 438–445

    Article  CAS  Google Scholar 

  26. Paulus F, Weiss MER, Steinhilber D, Nikitin AN, Schütte C, Haag R. Anionic ring-opening polymerization simulations for hyperbranched polyglycerols with defined molecular weights. Macromolecules, 2013, 46: 8458–8466

    Article  CAS  Google Scholar 

  27. Rubinstein M, Colby RH. Polymer Physics. Oxford: Oxford University Press, 2003

    Google Scholar 

  28. Li ZS, Ba XW, Sun CC, Tang XY, Tang AC. Aa-Bb-type stockmayer distribution and scaling study. Macromolecules, 1991, 24: 3696–3699

    Article  CAS  Google Scholar 

  29. Ba XW, Wang HJ, Zhao M, Wang SJ. Conversion dependence of the z-average mean square radii of gyration for hyperbranched polymers with excluded volume effect. Macromolecules, 2002, 35: 4193–4197

    Article  CAS  Google Scholar 

  30. Ba XW, Tian YL, Diao JZ, Wang SJ, Wang HJ. The scaling behavior of the molecular parameters of the hyperbranched polymers made by self-condensing vinyl polymerization. Eur Phys J E, 2005, 17: 221–223

    Article  CAS  Google Scholar 

  31. Stockmayer WH. Theory of molecular size distribution and gel formation in branched-chain polymers. J Chem Phys, 1943, 11: 45–55

    Article  CAS  Google Scholar 

  32. Sawada H. Thermodynamics of Polymerization. New York: NY, 1976

    Google Scholar 

  33. Burchard W. Angular distribution of rayleigh scattering from branched polycondensates. Amylopectin and glycogen types. Macromolecules, 1972, 5: 604–610

    Article  CAS  Google Scholar 

  34. Dobson GR, Gordon M. Configurational statistics of highly branched polymer systems. J Chem Phys, 1964, 41: 2389–2398

    Article  CAS  Google Scholar 

  35. Konkolewicz D, Gray-Weale A, Perrier S. Describing the structure of a randomly hyperbranched polymer. Macromol Theory Simul, 2010, 19: 219–227

    Article  CAS  Google Scholar 

  36. Muthukumar M. Counterion adsorption theory of dilute polyelectrolyte solutions: asnarent molecular weight, second virial coefficient, and intermolecular structure factor. J Chem Phys, 2012, 137: 034902

  37. He XH, Tang J. Kinetics of self-condensing vinyl hyperbranched polymerization in three-dimensional space. J Polym Sci Polym Chem, 2008, 46: 4486–4494

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuofei Zhao or Haijun Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, X., Zhao, Z., Wang, H. et al. The radius of gyration for a ternary self-condensing vinyl polymerization system. Sci. China Chem. 58, 1875–1883 (2015). https://doi.org/10.1007/s11426-015-5426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5426-6

Keywords

Navigation