Skip to main content
Log in

Transparent flexible ZnO/MWCNTs/pbma ternary nanocomposite film with enhanced mechanical properties

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Functional organic-inorganic nanocomposites with high transparency show significant potential application in many fields. However, it is still a great challenge to prepare flexible transparent nanocomposites due to the intrinsic stiffness of the nanoparticles and the poor interaction between nanoparticles and organic matrices. In this work, a transparent ternary nanocomposite film with enhanced mechanical performance is fabricated by two-steps. First, the transparent ternary ZnO/MWCNTs/n-butyl methacrylate (BMA) nanodispersion is prepared by mixing the ZnO/BMA and MWCNTs/BMA dispersions directly. Then, the ternary nanocoposites film is fabricated via in-situ bulk polymerization of the above nanodispersions. As a result, the tensile strength of the ZnO/MWCNTs/poly-n-butyl methacrylate (PBMA) ternary film is enhanced by 42% and the elongation at break is three times that of ZnO/PBMA nanocomposite. The hardness of the film increases from 5B to 1H with 40 wt% ZnO. These results indicate that ZnO and MWCNTs can improve the mechanical properties of the composite significantly. Importantly, the ternary nanocomposite film still remains high transparency and exhibit excellent UV-shielding performance. The as-prepared transparent multifunctional nanocomposite films have promising applications in optical materials and devices, such as optical filters, contact lenses and protection packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson RB, Ginzburg VV, Matsen MW, Balazs AC. Science, 2001, 292: 2469–2472

    Article  CAS  Google Scholar 

  2. Balazs AC, Emrik T, Russell TP. Science, 2006, 314: 1107–1110

    Article  CAS  Google Scholar 

  3. Wang L, Yoon MH, Lu G, Yang Y, Facchetti A, Marks TJ. Nat Mater, 2006, 5: 893–900

    Article  CAS  Google Scholar 

  4. Zeng XF, Kong XR, Ge JL, Liu HT, Gao C, Shen ZG, Chen JF. Ind Eng Chem Res, 2011, 50: 3253–3258

    Article  CAS  Google Scholar 

  5. Liu HT, Zeng XF, Zhao H, Chen JF. Ind Eng Chem Res, 2012, 51: 6753–6759

    Article  CAS  Google Scholar 

  6. Parlak O, Demir MM. ACS Appl Mater Interf, 2011, 3: 4306–4314

    Article  CAS  Google Scholar 

  7. Cho DY, Eun K, Choa SJ, Kim HK. Carbon, 2014, 66: 530–538

    Article  CAS  Google Scholar 

  8. Soumya S, Mohamed AP, Paul L, Mohan K, Ananthakumar S. Solv Energ Mat Sol C, 2014, 125: 102–112

    Article  CAS  Google Scholar 

  9. Song WL, Cao MS, Lu MM, Bi S, Wang CY, Liu J, Yuan J, Fan LZ. Carbon, 2014, 66: 67–76

    Article  CAS  Google Scholar 

  10. Tsai CM, Hsu SH, Ho CC, Tu YC, Tsai HC, Wang CA, Su WF. J Mater Chem C, 2014, 2: 2251–2258

    Article  CAS  Google Scholar 

  11. Althues H, Henle J, Kaskel S. Chem Soc Rev, 2007, 36: 1454–1456

    Article  CAS  Google Scholar 

  12. Zou H, Wu S, Shen J. Chem Soc Rev, 2008, 108: 3893–3957

    Article  CAS  Google Scholar 

  13. Liao WJ, Gu AJ, Liang GZ, Yuan L. Colloid Surf A-Physicochem Eng Asp, 2012, 396: 74–82

    Article  CAS  Google Scholar 

  14. Amiran J, Nicolosi V, Bergin SD, Khan U, Lyons PE, Coleman JN. J Phys Chem C, 2008, 112: 3519–3524

    Article  CAS  Google Scholar 

  15. Sanchez C, Belleville P, Popall M, Nicole L. Chem Soc Rev, 2011, 40: 696–753

    Article  CAS  Google Scholar 

  16. Deng H, Bilotti E, Zhang R, Wang K, Zhang Q, Peijs T, Fu Q. J Appl Polym Sci, 2011, 120: 133–140

    Article  CAS  Google Scholar 

  17. Ziadeh M, Fischer B, Schmid J, Altstädt V, Breu J. Polymer, 2014, 55: 3770–3781

    Article  CAS  Google Scholar 

  18. Pokharel P, Lee DS. Chem Eng J, 2014, 253: 356–365

    Article  CAS  Google Scholar 

  19. Shi Y, Kashiwagi T, Walters RN, Gilman JW, Lyon RE, Sogah DY. Polymer, 2009, 50: 3478–3487

    Article  CAS  Google Scholar 

  20. Yang BX, Pamoda KP, Xu GQ, Goh SH. Adv Funct Mater, 2007, 17: 2062–2069

    Article  CAS  Google Scholar 

  21. Zeng G, Karger-Kocsis J, Zou J. Carbon, 2010, 48: 4289–4300

    Article  Google Scholar 

  22. Pan HF, Song L, Ma LY, Hu Y. Ind Eng Chem Res, 2012, 51: 16326–16332

    Article  CAS  Google Scholar 

  23. Shen ZG, Zhang J, Sim G, Yun JSL, Chen JF. Process for making nanosized and micro-sized precipitate particles. US Patent, 7985388, 2011-07-26

    Google Scholar 

  24. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C. Carbon, 2008, 46: 833–840

    Article  CAS  Google Scholar 

  25. Basiuk EV, Monroy-Peláez M, Puente-Lee I, Basiuk VA. Nano Lett, 2004, 4: 863–866

    Article  CAS  Google Scholar 

  26. Yao HQ, Chu CC, Sue HJ, Nishimura R. Carbon, 2013, 53: 366–373

    Article  CAS  Google Scholar 

  27. Stevens JL, Huang AY, Peng HQ, Chiang IW, Khabashesku VN, Margrave JL. Nano Lett, 2003, 3: 331–336

    Article  CAS  Google Scholar 

  28. Lin ZY, Liu Y, Wong CP. Langmuir, 2010, 26: 16110–16114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofei Zeng or Jianfeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Zeng, X., Wang, J. et al. Transparent flexible ZnO/MWCNTs/pbma ternary nanocomposite film with enhanced mechanical properties. Sci. China Chem. 59, 1010–1017 (2016). https://doi.org/10.1007/s11426-015-0467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-0467-4

Keywords

Navigation