Skip to main content
Log in

Tunable supramolecular hydrogels from polypeptide-PEG-polypeptide triblock copolymers

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of ABA triblock copolymers of poly(γ-(2-methoxy ethoxy)esteryl-glutamate)-block-poly(ethylene glycol)-block-poly(γ-(2-methoxy ethoxy)esteryl-glutamate) with poly(ethylene glycol) as middle hydrophilic B block and oligo(ethylene glycol)-functionalized polyglutamate (poly-L-EG2Glu) as terminal A blocks were prepared via ring-opening polymerization of EG2Glu N-carboxyanhydride (NCA). The resulting P(EG2Glu)-b-PEG-b-P(EG2Glu) triblocks can spontaneously form hydrogels in water. The intermolecular hydrogen bonding interactions between polypeptides blocks were responsible for the formation of gel network structure. These hydrogels displayed shear-thinning and rapid recovery properties, which endowed them potential application as injectable drug delivery system. The mechanical strength of hydrogels can be modulated by copolymer composition, molecular weight and concentrations. Also, it was found that the hydrogels’ strength decreased with temperature due to dehydration of polypeptide segments. Atomic force microscopy and scanning electron microscopy images revealed that these hydrogels were formed through micelle packing mechanism. Circular dichroism and Fourier transform infrared spectroscopy characterizations suggested the poly-L-EG2Glu block adopted mixed conformation. A preliminary assessment of drug release in vitro demonstrated the hydrogels can offer a sustained release of doxorubicin (DOX) and the release rate could be controlled by varying chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science, 2012, 336: 1124–1128

    Article  CAS  Google Scholar 

  2. Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011, 12: 1387–1408

    Article  Google Scholar 

  3. Vashist A, Vashist A, Gupta YK, Ahmad S. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B, 2014, 2: 147–166

    CAS  Google Scholar 

  4. Chen Z, Wang W, Guo L, Yu Y, Yuan Z. Preparation of enzymatically cross-linked sulfated chitosan hydrogel and its potential application in thick tissue engineering. Sci China Chem, 2013, 56: 1701–1709

    CAS  Google Scholar 

  5. Zhang S, Li Z. Stimuli-responsive polypeptide materials prepared by ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. J Polym Sci, Part B: Polym Phys, 2013, 51: 546–555

    CAS  Google Scholar 

  6. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294: 1684–1688

    Article  CAS  Google Scholar 

  7. Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers, 2010, 94: 1–18

    Article  CAS  Google Scholar 

  8. Deming TJ. Synthetic polypeptides for biomedical applications. Prog Polym Sci, 2007, 32: 858–875

    CAS  Google Scholar 

  9. Lu H, Wang J, Song ZY, Yin LC, Zhang YF, Tang HY, Tu CL, Lin Y, Cheng JJ. Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications. Chem Comm, 2014, 50: 139–155

    CAS  Google Scholar 

  10. Peng H, Chen WL, Kong J, Shen ZQ, Ling J. Synthesis of α-hydroxy-ω-aminotelechelic polypeptide from α-amino acid N-carboxyanhydrides catalyzed by alkali-metal borohydrides. Chin J Polym Sci, 2014, 32: 743–750

    CAS  Google Scholar 

  11. Yang WX, Wang LL, Zhu H, Xu RW, Wu YX. Synthesis of poly (glutamic acid-co-aspartic acid) via combination of N-carboxyan-hydride ring opening polymerization with debenzylation. Chin J Polym Sci, 2013, 31: 1706–1716

    CAS  Google Scholar 

  12. Huang J, Heise A. Stimuli responsive synthetic polypeptides derived from N-carboxyanhydride (NCA) polymerisation. Chem Soc Rev, 2013, 42: 7373–7390

    CAS  Google Scholar 

  13. Choi YY, Joo MK, Sohn YS, Jeong B. Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers. Soft Matter, 2008, 4: 2383–2387

    Article  CAS  Google Scholar 

  14. Oh HJ, Joo MK, Sohn YS, Jeong B. Secondary structure effect of polypeptide on reverse thermal gelation and degradation of l/dl-poly (alanine)-poloxamer-l/dl-poly(alanine) copolymers. Macromolecules, 2008, 41: 8204–8209

    Article  CAS  Google Scholar 

  15. Choi YY, Jang JH, Park MH, Choi BG, Chi B, Jeong B. Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(l-alanine) block copolymers. J Mater Chem, 2010, 20: 3416–3421

    CAS  Google Scholar 

  16. Cheng Y, He C, Xiao C, Ding J, Zhuang X, Huang Y, Chen X. Decisive role of hydrophobic side groups of polypeptides in thermosensitive gelation. Biomacromolecules, 2012, 13: 2053–2059

    Article  CAS  Google Scholar 

  17. Huang J, Hastings CL, Duffy GP, Kelly HM, Raeburn J, Adams DJ, Heise A. Supramolecular hydrogels with reverse thermal gelation properties from (oligo)tyrosine containing block copolymers. Biomacromolecules, 2013, 14: 200–206

    Article  CAS  Google Scholar 

  18. Ma Y, Fu X, Shen Y, Fu W, Li Z. Irreversible low critical solution temperature behaviors of thermal-responsive oegylated poly(l-cysteine) containing disulfide bonds. Macromolecules, 2014, 47: 4684–4689

    Article  CAS  Google Scholar 

  19. Chen C, Wu D, Fu W, Li Z. Peptide hydrogels assembled from nonionic alkyl-polypeptide amphiphiles prepared by ring-opening polymerization. Biomacromolecules, 2013, 14: 2494–2498

    Article  CAS  Google Scholar 

  20. Zhang S, Fu W, Li Z. Supramolecular hydrogels assembled from nonionic poly(ethylene glycol)-b-polypeptide diblocks containing oegylated poly-l-glutamate. Polym Chem, 2014, 5: 3346–3351

    CAS  Google Scholar 

  21. Ward MA, Georgiou TK. Thermoresponsive gels based on aba triblock copolymers: does the asymmetry matter? J Polym Sci, Part A: Polym Chem, 2013, 51: 2850–2859

    CAS  Google Scholar 

  22. Lin Z, Cao S, Chen X, Wu W, Li J. Thermoresponsive hydrogels from phosphorylated ABA triblock copolymers: a potential scaffold for bone tissue engineering. Biomacromolecules, 2013, 14: 2206–2214

    Article  CAS  Google Scholar 

  23. Kim EH, Joo MK, Bahk KH, Park MH, Chi B, Lee YM, Jeong B. Reverse thermal gelation of paf-plx-paf block copolymer aqueous solution. Biomacromolecules, 2009, 10: 2476–2481

    Article  CAS  Google Scholar 

  24. Bauri K, De P, Shah PN, Li R, Faust R. Polyisobutylene-based helical block copolymers with pH-responsive cationic side-chain amino acid moieties by tandem living polymerizations. Macromolecules, 2013, 46: 5861–5870

    Article  CAS  Google Scholar 

  25. Chen C, Wang Z, Li Z. Thermoresponsive polypeptides from pegylated poly-L-glutamates. Biomacromolecules, 2011, 12: 2859–2863

    Article  CAS  Google Scholar 

  26. Qu W, Chen S, Ren S, Jiang XJ, Zhuo RX, Zhang XZ. A bioreducible polypeptide for efficient gene transfection both in vitro and in vivo. Chin J Polym Sci, 2013, 31: 713–718

    CAS  Google Scholar 

  27. Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc, 2006, 1: 2876–2890

    CAS  Google Scholar 

  28. Zhang S, Chen C, Li Z. Effects of molecular weight on thermal responsive property of pegylated poly-l-glutamates. Chin J Polym Sci, 2013, 31: 201–210

    CAS  Google Scholar 

  29. Shen J, Chen C, Fu W, Shi L, Li Z. Conformation-specific self-assembly of thermo-responsive poly(ethylene glycol)-b-polypeptide diblock copolymer. Langmuir, 2013, 29: 6271–6278

    Article  CAS  Google Scholar 

  30. Jeong B, Bae YH, Kim SW. Thermoreversible gelation of peg-plgapeg triblock copolymer aqueous solutions. Macromolecules, 1999, 32: 7064–7069

    Article  CAS  Google Scholar 

  31. O’Lenick TG, Jiang X, Zhao B. Thermosensitive aqueous gels with tunable sol gel transition temperatures from thermo- and pH-responsive hydrophilic aba triblock copolymer. Langmuir, 2010, 26: 8787–8796

    Article  Google Scholar 

  32. O’Lenick TG, Jin N, Woodcock JW, Zhao B. Rheological properties of aqueous micellar gels of a thermo- and pH-sensitive aba triblock copolymer. J Phys Chem B, 2011, 115: 2870–2881

    Google Scholar 

  33. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev, 2008, 60: 1638–1649

    CAS  Google Scholar 

  34. Kissel T, Li YX, Unger F. Aba-triblock copolymers from biodegradable polyester a-blocks and hydrophilic poly(ethylene oxide) b-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Adv Drug Deliv Rev, 2002, 54: 99–134

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenxin Fu or Zhibo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Shen, Y., Ma, Y. et al. Tunable supramolecular hydrogels from polypeptide-PEG-polypeptide triblock copolymers. Sci. China Chem. 58, 1005–1012 (2015). https://doi.org/10.1007/s11426-014-5297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5297-2

Keywords

Navigation