Skip to main content
Log in

Synthesis, crystal structure, and application of an acenaphtho[1,2-k] fluoranthene diimide derivative

  • Articles
  • Special Issue Organic Photovoltaics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic electron acceptor materials play an important role in organic electronics. Recently, many organic electron acceptors have been developed, in which aromatic fused-imides have proved to be a promising family of excellent electron acceptors. We report the first synthesis of a novel aromatic fused-imide, acenaphtho[1, 2-k]fluoranthene diimide derivative (AFI), using lithium-halogen exchange and Diels-Alder reactions. The construction of a large conjugated plane and the introduction of electron-withdrawing imide groups endow AFI with a low lowest unoccupied molecular orbital (LUMO) level of −3.80 eV. AFI exhibits a regular molecular arrangement and strong π-π interactions in the single-crystal structure, which indicates its potential application in organic electronic devices. Solar cell devices that were fabricated using AFI as the electron acceptor and P3HT as the electron donor achieved an energy conversion efficiency of 0.33%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Usta H, Facchetti A, Marks, TJ. n-Channel semiconductor materials design for organic complementary circuits. Acc Chem Res, 2011, 44: 501–510

    Article  CAS  Google Scholar 

  2. Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR. Rylene and related diimides for organic electronics. Adv Mater, 2011, 23: 268–284

    Article  CAS  Google Scholar 

  3. Tang Q, Li H, Liu Y, Hu WP. High-performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons. J Am Chem Soc, 2006, 128: 14634–14639

    Article  CAS  Google Scholar 

  4. Streetman BG. Solid State Electronic Devices, 4th ed. Prentice Hall: Englewood Cliffs, 1995

    Google Scholar 

  5. Zaumseil J, Sirringhaus H. Electron and ambipolar transport in organic field-effect transistors. Chem Rev, 2007, 107: 1296–1323

    Article  CAS  Google Scholar 

  6. Dhar BM, Kini GS, Xia GQ, Jung BJ, Markovic N, Katz HE. Field-effect-tuned lateral organic diodes. Proc Natl Acad Sci USA, 2010, 107: 3972–3976

    Article  CAS  Google Scholar 

  7. Singh TB, Marjanovic N, Stadler P, Auinger M, Matt GJ, Günes S, Sariciftci NS, Schwödiauer R, Bauer S. Correlation between morphology and ambipolar transport in organic field-effect transistors. J Appl Phys, 2005, 97: 083714–1-5

    Article  Google Scholar 

  8. He YJ, Chen HY, Hou JH, Li YF. Indene-C-60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc, 2010, 132: 1377–1382

    Article  CAS  Google Scholar 

  9. Pei C, Li YF, Zhan XW. Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy Environ Sci, 2014, 7: 2005–2011

    Article  Google Scholar 

  10. Gsaenger M, Oh JH, Koenemann M, Hoeffken HW, Krause AM, Bao Z, Würthner F. A crystal-engineered hydrogen-bonded octachloroperylene diimide with a twisted core: an n-Channel organic semiconductor. Angew Chem Int Ed, 2010, 49: 740–743

    Article  CAS  Google Scholar 

  11. Gao J, Li Y, Wang ZH. Synthesis and properties of naphthobisbenzothiophene diimides. Org Lett, 2013, 15: 1366–1369

    Article  CAS  Google Scholar 

  12. Wen YG, Liu YL, Di CA, Wang Y, Sun XN, Guo YL, Zheng J, Wu WP, Ye SH, Yu G. Improvements in stability and performance of N,N′-dialkyl perylene diimide-based n-Type thin-film transistors. Adv Mater, 2009, 21: 1631–1635

    Article  CAS  Google Scholar 

  13. Zhou E, Cong J, Wei Q, Tajima K, Yang C, Hashimoto K. All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. Angew Chem Int Ed, 2011, 50: 2799–2803

    Article  CAS  Google Scholar 

  14. Kamm V, Battagliarin G, Howard IA, Pisula W, Mavrinskiy A, Li C, Müllen K, Laquai F. Polythiophene:perylene diimide solar cells — the impact of alkyl-substitution on the photovoltaic performance. Adv Energy Mater, 2011, 1: 297–302

    Article  CAS  Google Scholar 

  15. Ahmed E, Ren G, Kim FS, Hollenbeck EC, Jenekhe SA. Design of new electron acceptor materials for organic photovoltaics: synthesis, electron transport, photophysics, and photovoltaic properties of oligothiophene-functionalized naphthalene diimides. Chem Mater, 2011, 23: 4563–4577

    Article  CAS  Google Scholar 

  16. Earmme T, Hwang YJ, Murari NM, Subramaniyan S, Jenekhe SA. All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor. J Am Chem Soc, 2013, 135: 14960–14963

    Article  CAS  Google Scholar 

  17. Handa S, Miyazaki E, Takimiya K, Kunugi Y. Solution-processible n-channel organic field-effect transistors based on dicyanomethylene-substituted terthienoquinoid derivative. J Am Chem Soc, 2007, 129: 11684–11685

    Article  CAS  Google Scholar 

  18. Liang Z, Tang Q, Liu J, Li J, Yan F, Miao Q. n-Type organic semi conductors based on pi-deficient pentacenequinones: synthesis, electronic structures, molecular packing, and thin film transistors. Chem Mater, 2010, 22: 6438–6443

    Article  CAS  Google Scholar 

  19. Ando S, Murakami R, Nishida JI, Tada H, ji Inoue Y, Tokito S, Yamashita Y. n-Type organic field-effect transistors with very high electron mobility based on thiazole oligomers with trifluoromethylphenyl groups. J Am Chem Soc, 2005, 127: 14996–14997

    Article  CAS  Google Scholar 

  20. Ding L, Ying HZ, Zhou Y, Lei T, Pei J. Polycyclic imide derivatives: synthesis and effective tuning of lowest unoccupied molecular orbital levels through molecular engineering. Org Lett, 2010, 12: 5522–5525

    Article  CAS  Google Scholar 

  21. Tesmer M, Vahrenkamp H. Sterically fixed dithiolate ligands and their zinc complexes: derivatives of 1,8-dimercaptonaphthalene. Eur J Inorg Chem, 2001, 1183–1188

    Google Scholar 

  22. Bhandari S, Ray S. A novel synthesis of bisbenzyl ketones by DCC induced condensation of phenylacetic acid. Synth Commun, 1998, 28: 765–771

    Article  CAS  Google Scholar 

  23. Sheldrick GM, SHELXS-97. A program for automatic solution of crystal structure. University of Goettingen, Germany, 1997

    Google Scholar 

  24. Sheldrick GM, SHELXL-97. A program for crystal structure refinement. University of Goettingen, Germany, 1997

    Google Scholar 

  25. Zhou Y, Ding L, Shi K, Dai YZ, Ai N, Wang J, Pei J. A non-fullerene small molecule as efficient electron acceptor in organic bulk heterojunction solar cells. Adv Mater, 2012, 24: 957–961

    Article  CAS  Google Scholar 

  26. Podzorov V, Pudalov VM, Gershenson ME, Field-effect transistors on rubrene single crystals with parylene gate insulator. App Phys Lett, 2003, 82: 1739–1741

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongmin Su or Jian Pei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Yang, C., Su, Z. et al. Synthesis, crystal structure, and application of an acenaphtho[1,2-k] fluoranthene diimide derivative. Sci. China Chem. 58, 364–369 (2015). https://doi.org/10.1007/s11426-014-5282-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5282-9

Keywords

Navigation