Skip to main content
Log in

New synthetic procedure for NaNH2(BH3)2 and evaluation of its hydrogen storage properties

  • Articles
  • Special Issue In Honor of the 100th Birthday of Prof. Khi-Rui Tsai
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Tremendous efforts have been devoted to the synthesis of new light element hydrides for hydrogen storage. Ammonia borane (AB) is a promising candidate possessing high hydrogen capacity and low dehydrogenation temperature. The step-wise dehydrogenation and release of by-products, however, are obstacles to its practical application. Chemical modifications of AB to synthesize new compounds or its derivatives are of practical and fundamental importance. Here we report an improved synthesis of sodium aminodiborane (NaNH2(BH3)2, NaABB), a derivative of ammonia borane. This procedure leads to high purity NaABB by reacting NaNH2 and 2 eq. AB. The dehydrogenation properties have been investigated by means of temperature programmed desorption-mass spectrometry, volumetric release, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and X-ray diffraction. In a closed vessel, NaABB can release ∼2 eq. H2 when heated at 271 °C, forming solid products of NaBH4 and highly condensed polyborazylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang ZG, Autrey T. Boron-nitrogen-hydrogen (BNH) compounds: recent developments in hydrogen storage, applications in hydrogenation and catalysis, and new syntheses. Energ Eviron Sci, 2012, 5: 9257–9268

    Article  CAS  Google Scholar 

  2. Stubbs NE, Roberson APM, Leitao EM, Manners I. Amine-borane dehydrogenation chemistry: metal-free hydrogen transfer, new catalysts and mechanisms, and the synthesis of polyaminoboranes. J Organnomet Chem, 2013, 730: 84–89

    Article  CAS  Google Scholar 

  3. Xu WL, Wu GT, Yao W, Fan HJ, Wu JS, Chen P. Metal amidoboranes: superior double-hydrogen-transfer agents in the reduction of ketones and imines. Chem-Eur J, 2012, 18: 13885–13892

    Article  CAS  Google Scholar 

  4. Staubitz A, Robertson APM, Sloan ME, Manners I. Amine- and phosphine-borane adducts: new interest in old molecules. Chem Rev, 2010, 110: 4023–4078

    Article  CAS  Google Scholar 

  5. Chen XN, Zhao JC, Shore SG. Facile synthesis of aminodiborane and inorganic butane analogue NH3BH2NH2BH3. J Am Chem Soc, 2010, 132: 10658–10659

    Article  CAS  Google Scholar 

  6. Wang P. Solid-state thermolysis of ammonia borane and related materials for high-capacity hydrogen storage. Dalton Trans, 2012, 41: 4296–4302

    Article  CAS  Google Scholar 

  7. Baitalow F, Baumann J, Wolf G, Jaenicke-Rossler K, Leitner G. Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods. Thermochim Acta, 2002, 391: 159–168

    Article  CAS  Google Scholar 

  8. He T, Xiong ZT, Wu GT, Chu HL, Wu CZ, Zhang T, Chen P. Nanosized Co- and Ni-catalyzed ammonia borane for hydrogen storage. Chem Mater, 2009, 21: 2315–2318

    Article  CAS  Google Scholar 

  9. Luo JH, Wu H, Zhou W, Kang XD, Fang ZZ, Wang P. LiBH4·NH3-BH3: a new lithium borohydride ammonia borane compound with a novel structure and favorable hydrogen storage properties. Int J Hydrogen Energ, 2012, 37: 10750–10757

    Article  CAS  Google Scholar 

  10. Tan YB, Tang ZW, Li SF, Li Q, Yu XB. NH3BH3/LiBH4·NH3 modified by metal hydrides for advanced dehydrogenation. Int J Hydrogen Energ, 2012, 37: 18101–18107

    Article  CAS  Google Scholar 

  11. Nakagawa Y, Ikarashi Y, Isobe S, Hino S, Ohnuki S. Ammonia borane-metal alanate composites: hydrogen desorption properties and decomposition processes. RSC Adv, 2014, 4: 20626–20631

    Article  CAS  Google Scholar 

  12. Kang XD, Fang ZZ, Kong LY, Cheng HM, Yao XD, Lu GQ, Wang P. Ammonia borane destabilized by lithium hydride: an advanced on-board hydrogen storage material. Adv Mater, 2008, 20: 2756–2759

    Article  CAS  Google Scholar 

  13. Gutowska A, Li LY, Shin YS, Wang CMM, Li XHS, Linehan JC, Smith RS, Kay BD, Schmid B, Shaw W, Gutowski M, Autrey T. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Ed, 2005, 44: 3578–3582

    Article  CAS  Google Scholar 

  14. Stephens FH, Bakwe RT, Matus MH, Grant DJ, Dixon DA. Acid initiation of ammonia-borane dehydrogenation for hydrogen storage. Angew Chem Int Ed, 2007, 46: 746–749

    Article  CAS  Google Scholar 

  15. Himmelberger DW, Yoon CW Bluhm ME, Carroll PJ, Sneddon LG. Base-promoted ammonia borane hydrogen-release. J Am Chem Soc, 2009, 131: 14101–14110

    Article  CAS  Google Scholar 

  16. Tang ZW, Chen XW, Chen H, Wu LM, Yu XB. Metal-free catalysis of ammonia-borane dehydrogenation/regeneration for a highly efficient and facilely recyclable hydrogen-storage material. Angew Chem Int Ed, 2013, 52: 5832–5835

    Article  CAS  Google Scholar 

  17. Li ZY, Zhu GS, Lu GQ, Qiu SL, Yao XD. Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. J Am Chem Soc, 2010, 132: 1490–1491

    Article  CAS  Google Scholar 

  18. Xiong ZT, Yong CK, Wu GT, Chen P, Shaw W, Karkamkar A, Autrey T, Jones MO, Johnson SR, Edwards PP. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat Mater, 2007, 7: 138–141

    Article  Google Scholar 

  19. Diyabalanage HVK, Nakagawa T, Shrestha RP, Semelsberger TA, Davis BL, Scott BL, Burrell AK, David WIF, Ryan KR, Jones MO, Edwards PP. Potassium(I) amidotrihydroborate: structure and hydrogen release. J Am Chem Soc, 2010, 132: 11836–11837

    Article  CAS  Google Scholar 

  20. Diyabalanage HVK, Shrestha RP, Semelsberger TA, Scott BL, Bowden ME, Davis BL, Burrell AK. Calcium amidotrihydroborate: a hydrogen storage material. Angew Chem Int Ed, 2007, 46: 8995–8997

    Article  Google Scholar 

  21. Luo JH, Kang XD, Wang P. Synthesis, formation mechanism, and dehydrogenation properties of the long-sought Mg(NH2BH3)2 compound. Energ Eviron Sci, 2013, 6: 1018–1025

    Article  CAS  Google Scholar 

  22. Zhang QA, Tang CX, Fang CH, Fang F, Sun D, Ouyang LZ, Zhu M. Synthesis, crystal structure, and thermal decomposition of strontium amidoborane. J Phys Chem C, 2010, 114: 1709–1714

    Article  CAS  Google Scholar 

  23. Genova RV, Fijalkowski KJ, Budzianowski A, Grochala W. Towards Y(NH2BH3)3: probing hydrogen storage properties of YX3/MNH2BH3 (X=F, Cl; M=Li, Na) and YHx-3/NH3BH3 composites. J Alloy Compd, 2010, 499: 144–148

    Article  CAS  Google Scholar 

  24. He T, Wang JH, Chen Z, Wu AA, Wu GT, Yin J, Chu HL, Xiong ZT, Zhang T, Chen P. Metathesis of alkali-metal amidoborane and FeCl3 in THF. J Mater Chem, 2012, 22: 7478–7483

    Article  CAS  Google Scholar 

  25. Fijalkowski KJ, Genova RV, Filinchuk Y, Budzianowski A, Derzsi M, Jaron T, Leszczynski PJ, Grochala W. NaLi(NH2BH3)2: the first mixed-cation amidoborane with unusual crystal structure. Dalton Trans, 2011, 40: 4407–4413

    Article  CAS  Google Scholar 

  26. Wu H, Zhou W, Pinkerton FE, Meyer MS, Yao QR, Gadipelli S, Udovic TJ, Yildirim T, Rush JJ. Sodium magnesium amidoborane: the first mixed-metal amidoborane. Chem Commun, 2011, 47: 4102–4104

    Article  CAS  Google Scholar 

  27. Xia GL, Tan YB, Chen XW, Guo ZP, Liu HK, Yu XB. Mixed-metal (Li, Al) amidoborane: synthesis and enhanced hydrogen storage properties. J Mater Chem A, 2013, 1: 1810–1820

    Article  CAS  Google Scholar 

  28. Stock A, Kuss E. Boric hydrogens, VI: the simplest boric hydrides. Berichte der Deutschen Chemischen Gesellschaft, 1923, 56: 789–808

    Article  Google Scholar 

  29. Schlesinger HT, Burg AB. Hydrides of boron VIII: the structure of the diammoniate of diborane and its relation to the structure of diborane. J Am Chem Soc, 1938, 60: 290–299

    Article  CAS  Google Scholar 

  30. Schultz DR, Parry RW. Chemical evidence for the structure of the diammoniate of diborane. 1. Evidence for the borohydride ion and for the dihydro-diammineboron (III) cation. J Am Chem Soc, 1958, 80: 4–8

    Article  CAS  Google Scholar 

  31. Daly SR, Bellott BJ, Kim DY, Girolami GS. Synthesis of the long-sought unsubstituted aminodiboranate Na(H3B-NH2-BH3) and its N-alkyl analogs. J Am Chem Soc, 2010, 132: 7254–7255

    Article  CAS  Google Scholar 

  32. Wu CZ, Wu GT, Xiong ZT, Han XW, Chu HL, He T, Chen P. LiNH2BH3·NH3BH3: structure and hydrogen storage properties. Chem Mater, 2010, 22: 3–5

    Article  CAS  Google Scholar 

  33. Ramachandran PV, Gagare PD. Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration. Inorg Chem, 2007, 46: 7810–7817

    Article  CAS  Google Scholar 

  34. Chua YS, Wu GT, Xiong ZT, He T, Chen P. Calcium amidoborane ammoniate-synthesis, structure, and hydrogen storage properties. Chem Mater, 2009, 21: 4899–4904

    Article  CAS  Google Scholar 

  35. Geick R, Perry CH, Rupprech G. Normal modes in hexagonal boron nitride. Phys Rev, 1966, 146: 543–547

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenguo Huang or Ping Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Huang, Z., Wu, G. et al. New synthetic procedure for NaNH2(BH3)2 and evaluation of its hydrogen storage properties. Sci. China Chem. 58, 169–173 (2015). https://doi.org/10.1007/s11426-014-5268-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5268-7

Keywords

Navigation