Skip to main content
Log in

Green photochemical synthesis of fluorescent carbon spheres in-situ enwrapped around Ag nanoparticles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Biocompatible carbon-spheres-based nanocomposites exhibit great potential in biomedical and clinical applications. In this contribution we report the first green photochemical synthesis of carbon spheres through in-situ enwrapping around silver nanoparticles (CS-Ag NPs). Since mesoporous carbon spheres can provide the location for combining Ag NPs and other agents, one-step synthesis of glutathione-stabilized CS-Ag NPs could be readily realized by photoreduction. TEM characterization of CS-Ag NPs nanocomposites illustrates that Ag NPs were superbly wrapped inside the carbon spheres and also adhered to the surfaces of the carbon spheres. These porous CS-Ag NPs show excellent fluorescence and effective antibacterial efficiency, exhibiting ideal lengthened activities against Escherichia coli and Staphylococcus aureus compared with bare Ag NPs. The relevant rationale behind it could be attributed to the fact that CS-Ag NPs nanocomposites can provide some excellent niches for the durable and slow release of silver ions. This raises the possibility of promising applications of CS-Ag NPs nanocomposites as excellent antibacterial agents for the efficient monitoring of some disease-related bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lv M, Su S, He Y, Huang Q. Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv Mater, 2010, 22: 5463–5467

    Article  CAS  Google Scholar 

  2. Eby DM, Schaeublin NM, Farrington KE, Hussain SM, Johnson GR. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS Nano, 2009, 3: 984–994

    Article  CAS  Google Scholar 

  3. Guo DW, Zhu LY, Huang ZH, Zhou HX. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials, 2013, 34: 7884–7894

    Article  CAS  Google Scholar 

  4. Gopinatha P, Gogoib SK, Sanpuic P, Paulb A. Signaling gene cascade in silver nanoparticle induced apoptosis. Colloid Surface B, 2010, 77: 240–245

    Article  Google Scholar 

  5. Wu QZ, Cao HQ, Luan QY, Zhang JY. Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications. Inorg Chem, 2008, 47: 5882–5888

    Article  CAS  Google Scholar 

  6. Perreault F, Tousley ME, Elimelech M. Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ Sci Technol Lett, 2014, 1: 71–76

    Article  CAS  Google Scholar 

  7. Adhikari MD, Goswami S, Panda BR. Membrane-directed high bactericidal activity of (gold nanoparticle)-polythiophene composite for niche applications against pathogenic bacteria. Adv Healthcare Mater, 2013, 2: 599–606

    Article  CAS  Google Scholar 

  8. Mei L, Lu HT, Zhang W, Wu ZM, Zhang XG. Bioconjugated nanoparticles for attachment and penetration into pathogenic bacteria. Biomaterials, 2013, 34: 10328–10337

    Article  CAS  Google Scholar 

  9. Kim JS, Kuk E, Yu KN, Kim JH. Antimicrobial effects of silver nanoparticles. Nanomedicine, 2007, 3: 95–101

    Article  CAS  Google Scholar 

  10. Li C, Wang XS, Chen F, Zhang CL. The antifungal activity of graphene oxide-silver nanocomposites. Biomaterials, 2013, 34: 3882–3890

    Article  CAS  Google Scholar 

  11. Parka MV, Neighc AM, Vermeulenb JP. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials, 2011, 32: 9810–9817

    Article  Google Scholar 

  12. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B, 2008, 112: 13608–13619

    Article  CAS  Google Scholar 

  13. Wang HS, Wang C, He YK, Xiao FN, Bao WJ. Core-shell Ag@SiO2 nanoparticles concentrated on a micro/nanofluidic device for surface plasmon resonance-enhanced fluorescent detection of highly reactive oxygen species. Anal Chem, 2014, 86: 3013–3019

    Article  CAS  Google Scholar 

  14. Dallas P, Sharma VK, Zboril R. Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci, 2011, 166: 119–135

    CAS  Google Scholar 

  15. Priester JH, Singhal A, Wu BH, Stucky GD. Integrated approach to evaluating the toxicity of novel cysteine-capped silver nanoparticles to Escherichia coli and Pseudomonas aeruginosa. Analyst, 2014, 139: 954–963

    Article  CAS  Google Scholar 

  16. Liu Y, Ren ZY, Wei YL, Jiang BJ, Feng SS. Synthesis and applications of graphite carbon sphere with uniformly distributed magnetic Fe3O4 nanoparticles (MGCSs) and MGCS@Ag, MGCS@TiO2. J Mater Chem, 2010, 20: 4802–4808

    Article  CAS  Google Scholar 

  17. Wang YX, Sun HQ, Ang HM, Tadé MO, Wang SB. Magnetic Fe3O4/carbon sphere/cobalt composites for catalytic oxidation of phenol solutions with sulfate radicals. Chem Eng J, 2014, 245: 1–9

    Article  CAS  Google Scholar 

  18. Wang XB, Liu J, Xu WZ. One-step hydrothermal preparation of amino-functionalized carbon spheres at low temperature and their enhanced adsorption performance towards Cr(VI) for water purification. Colloid Surface A, 2012, 415: 288–294

    Article  CAS  Google Scholar 

  19. Ganeshkumar M, Ponrasu T, Shishkumar M, Suguna Lonchin. Preparation of amphiphilic hollow carbon nanosphere loaded insulin for oral delivery. Colloid Surface B, 2013, 103: 238–243

    CAS  Google Scholar 

  20. Li JY, Shi LX, Shao YX, Selke M, Chen BA, Jiang H, Wang XM. The cellular labeling and pH-sensitive responsive-drug release of celastrol in cancer cells based on Cys-CdTe QDs. Sci China Chem, 2014, 57: 833–841

    Article  Google Scholar 

  21. Han QY, Li GA, Wang DX, He EJ. Synthesis of Ag-SiO2 composite nanospheres and their catalytic activity. Sci China Chem, 2014, 57: 881–887

    Article  CAS  Google Scholar 

  22. Tan C, Xu XH, Wang F. Carbon black supported ultra-high loading silver nanoparticle catalyst for electro-oxidation and determination of hydrazine. Sci China Chem, 2013, 56: 911–916

    Article  CAS  Google Scholar 

  23. Cao M, Liu XR, Tang TB. Facile synthesis of size-tunable stable nanoparticles via click reaction for cancer drug delivery. Sci China Chem, 2014, 57: 633–644

    Article  CAS  Google Scholar 

  24. Li SH, Wu CY, Lv XY, Tang X. Discovery of ferrocene-carborane derivatives as novel chemical antimicrobial agents against multidrug-resistant bacteria. Sci China Chem, 2012, 55: 2388–2395

    Article  CAS  Google Scholar 

  25. Li L, Wang QB. Spontaneous self-assembly of silver nanoparticles into lamellar structured silver nanoleaves. ACS Nano, 2013, 7: 3053–3060

    Article  CAS  Google Scholar 

  26. Li L, Hu F, Xu DY, Shen SL, Wang QB. Metal ion redox potential plays an important role in high-yield synthesis of monodisperse silver nanoparticles. Chem Commun, 2012, 48: 4728–4730

    Article  CAS  Google Scholar 

  27. Li L, Sun J, Li XR, Zhang Y, Wang ZX, Wang CR, Dai JW, Wang QB. Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity. Biomaterials, 2012, 33:1714–1721

    Article  CAS  Google Scholar 

  28. Kahrilas GA, Haggren W, Read RL. Investigation of antibacterial activity by silver nanoparticles prepared by microwave-assisted green syntheses with soluble starch, dextrose, and arabinose. ACS Sustainable Chem Eng, 2014, 2: 590–598

    Article  CAS  Google Scholar 

  29. Chen MJ, Zhao YN, Yang WT, Yin MZ. UV-irradiation-induced templated/in-situ formation of ultrafine silver/polymer hybrid nanoparticles as antibacterial. Langmuir, 2013, 29: 16018–16024

    Article  CAS  Google Scholar 

  30. Richards CI, Choi S, Hsiang JC, Antoku Y. Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc, 2008, 130: 5038–5039

    Article  CAS  Google Scholar 

  31. Wang CX, Xu L, Wang Y, Zhang D, Shi XD. Fluorescent silver nanoclusters as effective probes for highly selective detection of mercury(II) at parts-per-billion levels. Chem Asian J, 2012, 7: 1652–1656

    Article  CAS  Google Scholar 

  32. Chakraborty I, Udayabhaskararao T, Pradeep T. High temperature nucleation and growth of glutathione protected ∼Ag75 clusters. Chem Commun, 2012, 48: 6788–6790

    Article  CAS  Google Scholar 

  33. Qiao ZA, Guo BK, Binder AJ, Chen JH. Controlled synthesis of mesoporous carbon nanostructures via a “silica-assisted” strategy. Nano Lett, 2013, 13: 207–212

    Article  CAS  Google Scholar 

  34. Balogh L, Swanson DR, Tomalia DA. Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett, 2001, 1: 18–21

    Article  CAS  Google Scholar 

  35. Wei QB, Fu F, Zhang YQ, Tang L. Preparation, characterization, and antibacterial properties of pH-responsive P(MMA-co-MAA)/silver nanocomposite hydrogels. J Polym Res, 2014, 21:349–357

    Article  Google Scholar 

  36. Ivask A, ElBadawy A, Kaweeteerawat C, Boren D. Fischer H. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano, 2014, 8: 374–386

    Article  CAS  Google Scholar 

  37. Loginov AV, Gorbunova VV, Boitsova TB. Photochemical synthesis and properties of colloidal copper, silver and gold adsorbed on quartz. J Nanopart Res, 2002, 4: 193–205

    Article  CAS  Google Scholar 

  38. Maretti L, Billone PS, Liu Y, Scaiano JC. Facile Photochemical synthesis and characterization of highly fluorescent silver nanoparticles. J Am Chem Soc, 2009, 131: 13972–13980

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, W., Liu, X., Ye, J. et al. Green photochemical synthesis of fluorescent carbon spheres in-situ enwrapped around Ag nanoparticles. Sci. China Chem. 58, 634–639 (2015). https://doi.org/10.1007/s11426-014-5254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5254-0

Keywords

Navigation