Skip to main content
Log in

Bacterial persistence

  • Reviews
  • Special Topic Biophysical Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Although bacterial persistence was first observed in 1944, its underlying mechanism is just beginning to be understood and many fundamental questions remain. In this review, we summarize studies in order to chart the full map of bacterial persistence. Because persistence significantly contributes to disease recalcitrance, we also elucidate the probable relationships between bacterial persistence and prolonged chronic infections, with some comments on future research directions and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis K. Persister cells and the riddle of biofilm survival. Biochem J, 2005, 70: 267–274

    CAS  Google Scholar 

  2. Bigger J. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet, 1944, 244: 497–500

    Article  Google Scholar 

  3. Fauvart M, De Groote VN, Michiels J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Micobiol, 2011, 60: 699–709

    Article  Google Scholar 

  4. Kint CI, Verstraeten N, Fauvart M, Michiels J. New-found fundamentals of bacterial persistence. Trends Microbiol, 2012, 20: 577–585

    Article  CAS  Google Scholar 

  5. Jayaraman R. Bacterial persistence: some new insights into an old phenomenon. J Biosci, 2008, 33: 795–805

    Article  CAS  Google Scholar 

  6. Cohen NR, Lobritz MA, Collins JJ. Microbial persistence and the road to drug resistance. Cell Host Microbe, 2013, 13: 632–642

    Article  CAS  Google Scholar 

  7. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science, 2004, 305: 1622–1625

    Article  CAS  Google Scholar 

  8. Fung DK, Chan EW, Chin ML, Chan RC. Delineation of a bacterial starvation stress response network which can mediate antibiotic tolerance development. Agent Chemother, 2010, 54: 1082–1093

    Article  CAS  Google Scholar 

  9. Maisonneuve E, Shakespeare LJ, Jørgensen MG, Gerdes K. Bacterial persistence by RNA endonucleases. Pro Nat Acad Sci USA, 2011, 108: 13206–13211

    Article  CAS  Google Scholar 

  10. Maisonneuve E, Castro-Camargo M, Gerdes K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell, 2013, 154: 1140–1150

    Article  CAS  Google Scholar 

  11. Lee HH, Molla MN, Cantor CR, Collins JJ. Bacterial charity work leads to population-wide resistance. Nature, 2010, 467: 82–85

    Article  CAS  Google Scholar 

  12. Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F, Leibler S, McKinney JD. Dynamic persistence of antibiotic-stressed mycobacteria. Science, 2013, 339: 91–95

    Article  CAS  Google Scholar 

  13. Delvigne F, Goffin P. Microbial heterogeneity affects bioprocess robustness: dynamic single-cell analysis contributes to understanding of microbial populations. Biotechnol J, 2014, 9: 61–72

    Article  CAS  Google Scholar 

  14. Theodore A, Lewis K, Vulić M. Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway. Genetics, 2013, 195: 1265–1276

    Article  CAS  Google Scholar 

  15. Kwan BW, Valenta JA, Benedik MJ, Wood TK. Arrested protein synthesis increases persister-like cell formation. Agent Chemother, 2013, 57: 1468–1473

    Article  CAS  Google Scholar 

  16. Amato SM, Orman MA, Brynildsen MP. Metabolic control of persister formation in Escherichia coli. Mol Cell, 2013, 50: 475–487

    Article  CAS  Google Scholar 

  17. Vega NM, Allison KR, Khalil AS, Collins JJ. Signaling-mediated bacterial persister formation. Nat Chem Biol, 2012, 8: 431–433

    Article  CAS  Google Scholar 

  18. Hayes F. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science, 2003, 301: 1496–1499

    Article  CAS  Google Scholar 

  19. Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microb, 2007, 5: 48–56

    Article  CAS  Google Scholar 

  20. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med, 2013, 3: a010306

    Article  Google Scholar 

  21. Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet, 2006, 2: e135

    Article  Google Scholar 

  22. Tripathi A, Dewan PC, Siddique SA, Varadarajan R. MazF induced growth inhibition and persister generation in Escherichia coli. J Bio Chem, 2014, 289: 4191–4205

    Article  CAS  Google Scholar 

  23. Hong SH, Wang X, O’Connor HF, Benedik MJ, Wood TK. Bacterial persistence increases as environmental fitness decreases. Microb Biotechnol, 2012, 5: 509–522

    Article  Google Scholar 

  24. Wayne LG, Hayes LG. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun, 1996, 64: 2062–2069

    CAS  Google Scholar 

  25. Wu Y, Vulić M, Keren I, Lewis K. Role of oxidative stress in persister tolerance. Agent Chemother, 2012, 56: 4922–4926

    Article  CAS  Google Scholar 

  26. Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science, 2012, 336: 315–319

    Article  CAS  Google Scholar 

  27. Gusarov I, Shatalin K, Starodubtseva M, Nudler E. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science, 2009, 325: 1380–1384

    Article  CAS  Google Scholar 

  28. Shatalin K, Shatalina E, Mironov A, Nudler E. H2S: a universal defense against antibiotics in bacteria. Science, 2011, 334: 986–990

    Article  CAS  Google Scholar 

  29. Anderson KL, Whitlock JE, Harwood VJ. Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Appl Environ Microbiol, 2005, 71: 3041–3048

    Article  CAS  Google Scholar 

  30. Leung V, Lévesque CM. A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. J Bacteriol, 2012, 194: 2265–2274

    Article  CAS  Google Scholar 

  31. Park SJ, Son WS, Lee BJ. Structural overview of toxin-antitoxin systems in infectious bacteria: a target for developing antimicrobial agents. BBA-Proteins Proteom, 2013, 1834: 1155–1167

    Article  CAS  Google Scholar 

  32. Hayes F, Kędzierska B. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs. Toxins, 2014, 6: 337–358

    Article  CAS  Google Scholar 

  33. Lusetti SL, Cox MM. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu Rev Biochem, 2002, 71: 71–100

    Article  CAS  Google Scholar 

  34. Radman M. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. In: Hanawalt P, Eds. Basic Life Sciences. Vol. 5: Molecular Mechanisms for Repair of DNA. New York: Springer US, 1975. 355–367

    Chapter  Google Scholar 

  35. Sassanfar M, Roberts JW. Nature of the sos-inducing signal in Escherichia coli: the involvement of DNA replication. J Mol Biol, 1990, 212: 79–96

    Article  CAS  Google Scholar 

  36. Kimmitt PT, Harwood CR, Barer MR. Toxin gene expression by shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg Infect Dis, 2000, 6: 458–465

    Article  CAS  Google Scholar 

  37. Guerin É, Cambray G, Sanchez-Alberola N, Campoy S, Erill I, Da ReS, Gonzalez-Zorn B, Barbé J, Ploy MC, Mazel D. The SOS response controls integron recombination. Science, 2009, 324: 1034–1034

    Article  CAS  Google Scholar 

  38. Kolter R, Greenberg EP. Microbial sciences: the superficial life of microbes. Nature, 2006, 441: 300–302

    Article  CAS  Google Scholar 

  39. Möker N, Dean CR, Tao J. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol, 2010, 192: 1946–1955

    Article  Google Scholar 

  40. Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med, 2012, 2: a012427

    Article  Google Scholar 

  41. Jain V, Kumar M, Chatterji D. ppGpp: stringent response and survival. J Microbiol, 2006, 44: 1–10

    CAS  Google Scholar 

  42. Engelberg-Kulka H, Glaser G. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu Rev Microbiol, 1999, 53: 43–70

    Article  CAS  Google Scholar 

  43. Drlica K. Control of bacterial DNA supercoiling. Mol Microbiol, 1992, 6: 425–433

    Article  CAS  Google Scholar 

  44. Pruss GJ, Manes SH, Drlica K. Escherichia coli DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell, 1982, 31: 35–42

    Article  CAS  Google Scholar 

  45. Ryan RP. Cyclic di-GMP signalling and the regulation of bacterial virulence. Microbiol, 2013, 159: 1286–1297

    Article  CAS  Google Scholar 

  46. Krasteva PV, Giglio KM, Sondermann H. Sensing the messenger: the diverse ways that bacteria signal through c-di-GMP. Protein Sci, 2012, 21: 929–948

    Article  CAS  Google Scholar 

  47. Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev, 2013, 42: 305–341

    Article  CAS  Google Scholar 

  48. Chimerel C, Field CM, Piñero-Fernandez S, Keyser UF, Summers DK. Indole prevents Escherichia coli cell division by modulating membrane potential. BBA-Biomembranes, 2012, 1818: 1590–1594

    Article  CAS  Google Scholar 

  49. Li XZ, Ma D, Livermore DM, Nikaido H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to beta-lactam resistance. Agent Chemother, 1994, 38: 1742–1752

    Article  CAS  Google Scholar 

  50. Jones SE, Lennon JT. Dormancy contributes to the maintenance of microbial diversity. Proc Nat Acad Sci USA, 2010, 107: 5881–5886

    Article  CAS  Google Scholar 

  51. Ferullo DJ, Lovett ST. The stringent response and cell cycle arrest in Escherichia coli. PLoS Genet, 2008, 4: e1000300

    Article  Google Scholar 

  52. Garnett JA, Matthews S. Interactions in bacterial biofilm development: a structural perspective. Curr Protein Pept Sci, 2012, 13: 739–755

    Article  CAS  Google Scholar 

  53. Lewis K. Riddle of biofilm resistance. Agent Chemother, 2001, 45: 999–1007

    Article  CAS  Google Scholar 

  54. Adams KN, Takaki K, Connolly LE, Wiedenhoft H, Winglee K, Humbert O, Edelstein PH, Cosma CL, Ramakrishnan L. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell, 2011, 145: 39–53

    Article  CAS  Google Scholar 

  55. Schaeffer P, Millet J, Aubert JP. Catabolic repression of bacterial sporulation. Proc Nat Acad Sci USA, 1965, 54: 704–711

    Article  CAS  Google Scholar 

  56. Grant SS, Kaufmann BB, Chand NS, Haseley N, Hung DT. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc Nat Acad Sci USA, 2012, 109: 12147–12152

    Article  CAS  Google Scholar 

  57. Conlon B, Nakayasu E, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature, 2013, 503: 365–370

    Article  CAS  Google Scholar 

  58. Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature, 2011, 473: 216–220

    Article  CAS  Google Scholar 

  59. Fu Y, Zhu M, Xing J. Resonant activation: a strategy against bacterial persistence. Phys Biol, 2010, 7: 016013

    Article  Google Scholar 

  60. Veening JW, Smits WK, Kuipers OP. Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol, 2008, 62: 193–210

    Article  CAS  Google Scholar 

  61. Spudich JL, Koshland Jr D. Non-genetic individuality: chance in the single cell. Nature, 1976, 262: 467–471

    Article  CAS  Google Scholar 

  62. Mora T, Bai F, Che YS, Minamino T, Namba K, Wingreen NS. Non-genetic individuality in Escherichia coli motor switching. Phys Biol, 2011, 8: 024001

    Article  Google Scholar 

  63. Bai F, Che YS, Kami-ike N, Ma Q, Minamino T, Sowa Y, Namba K. Populational heterogeneity vs. temporal fluctuation in Escherichia coli flagellar motor switching. Biophys J, 2013, 105: 2123–2129

    Article  CAS  Google Scholar 

  64. Iino R, Matsumoto Y, Nishino K, Yamaguchi A, Noji H. Design of a large-scale femtoliter droplet array for single-cell analysis of drug-tolerant and drug-resistant bacteria. Front Microbiol, 2013, 4: 300

    Article  Google Scholar 

  65. Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, Hearn J, Emili A, Xie XS. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 2010, 329: 533–538

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YingYing Pu or Fan Bai.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yang, J., Zhao, Z. et al. Bacterial persistence. Sci. China Chem. 57, 1625–1633 (2014). https://doi.org/10.1007/s11426-014-5245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5245-1

Keywords

Navigation