Skip to main content
Log in

Surface of room temperature ionic liquid [bmim][PF6] studied by polarization- and experimental configuration-dependent sum frequency generation vibrational spectroscopy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Understanding and control of the surface properties such as molecular orientations are of great importance in numerous applications of ionic liquids. However, there remain discrepancies among the previous experimental and theoretical studies on the surface orientation and structures of room temperature ionic liquids (RTIL) systems. In this article, the orientation of 1-butyl-3-methylimidazolium ([bmin]) cation at the air/liquid interface of a characteristic RTIL, 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), was investigated by the sum frequency generation vibrational spectroscopy (SFG-VS). Detailed polarization and experimental configuration analyses of the SFG-VS spectra showed the possibility of a small spectral splitting in the CH3 symmetric stretching region, which can be further attributed to the probable existence of multiple orientations for the interfacial [bmim] cations. In addition, the (N)-CH3 vibrations were absent, ruling out the prediction by several recent molecular dynamics simulations which state that portions of the [bmim] cations orient with a standing-up (N)-CH3 group at the ionic liquid surface. Hence, new realistic theoretical models have to be developed to reflect the complex nature of the ionic liquid surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holbrey JD, Rogers RD. Ionic Liquids in Synthesis. 2nd Ed. Weinheim: Wiley-VCH, 2008

    Google Scholar 

  2. Esperanca J, Lopes JNC, Tariq M, Santos L, Magee JW, Rebelo LPN. Volatility of aprotic ionic liquids: a review. J Chem Eng Data, 2010, 55: 3–12

    Article  CAS  Google Scholar 

  3. Ohno H. Electrochemical Aspects of Ionic Liquids. 2nd Ed. New Jersey: Wiley Hoboken, 2011

    Book  Google Scholar 

  4. Suarez PAZ, Selbach VM, Dullius JEL, Einloft S, Piatnicki CMS, Azambuja DS, deSouza RF, Dupont J. Enlarged electrochemical window in dialkyl-imidazolium cation based room-temperature air and water-stable molten salts. Electrochim Acta, 1997, 42: 2533–2535

    Article  CAS  Google Scholar 

  5. Fredlake CP, Crosthwaite JM, Hert DG, Aki S, Brennecke JF. Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data, 2004, 49: 954–964

    Article  CAS  Google Scholar 

  6. Sheldon R. Catalytic reactions in ionic liquids. Chem Commun, 2001: 2399–2407

    Google Scholar 

  7. Liu H, Liu Y, Li J. Ionic liquids in surface electrochemistry. Phys Chem Chem Phys, 2010, 12: 1685–1697

    Article  CAS  Google Scholar 

  8. Cooper ER, Andrews CD, Wheatley PS, Webb PB, Wormald P, Morris RE. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature, 2004, 430: 1012–1016

    Article  CAS  Google Scholar 

  9. Visser AE, Rogers RD, Room-temperature ionic liquids: new solvents for F-element separations and associated solution chemistry. J Solid State Chem, 2003, 171: 109–113

    Article  CAS  Google Scholar 

  10. Capello C, Fischer U, Hungerbuehler K. What is a green solvent? A Comprehensive framework for the environmental assessment of solvents. Green Chem, 2007, 9: 927–934

    Article  CAS  Google Scholar 

  11. Law G, Watson PR. Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir, 2001, 17: 6138–6141

    Article  CAS  Google Scholar 

  12. Solutskin E, Ocko BM, Taman L, Kuzmenko I, Gog T, Deutsch M. Surface, layering in ionic liquids: an X-ray reflectivity study. J Am Chem Soc, 2005, 127: 7796–7804

    Article  CAS  Google Scholar 

  13. Bowers J, Vergara-Gutierrez MC, Webster JRP. Surface ordering of amphiphilic ionic liquids. Langmuir, 2004, 20: 309–312

    Article  CAS  Google Scholar 

  14. Baldelli S. Influence of water on the orientation of cations at the surface of a room-temperature ionic liquid: a sum frequency generation vibrational spectroscopic study. J Phys Chem B, 2003, 107: 6148–6152

    Article  Google Scholar 

  15. Iimori T, Iwahashi T, Ishii H, Seki K, Ouchi Y, Ozawa R, Hamaguchi H, Kim D. Orientational ordering of alkyl chain at the air/liquid interface of ionic liquids studied by sum frequency vibrational spectroscopy. Chem Phys Lett, 2004, 389: 321–326

    Article  CAS  Google Scholar 

  16. Santos CS, Rivera-Rubero S, Dibrov S, Baldelli S. Ions at the surface of a room-temperature ionic liquid. J Phys Chem C, 2007, 111: 7682–7691

    Article  CAS  Google Scholar 

  17. Bhargava BL, Balasubramanian S. Lay layering at an ionic liquidvapor interface: a molecular dynamics simulation study of [bmim] [PF6]. J Am Chem Soc, 2006, 128: 10073–10078

    Article  CAS  Google Scholar 

  18. Lynden-Bell RM, Del Popolo M. Simulation of the surface structure of butylmethylimidazolium ionic liquids. Phys Chem Chem Phys, 2006, 8: 949–954

    Article  CAS  Google Scholar 

  19. Yockel S, Schatz GC. Modeling O(3P) and Ar scattering from the ionic liquid [emim][NO3] at 5 eV with hybrid QM/MM molecular dynamics. J Phys Chem B, 2010, 114: 14241–14248

    Article  CAS  Google Scholar 

  20. Hantal G, Cordeiro M, Jorge M. What does an ionic liquid surface really look like? Unprecedented details from molecular simulations. Phys Chem Chem Phys, 2011, 13: 21230–21232

    Article  CAS  Google Scholar 

  21. Yan TY, Li S, Jiang W, Gao XP, Xiang B, Voth GA. Structure of the liquid-vacuum interface of room-temperature ionic liquids: a molecular dynamics study. J Phys Chem B, 2006, 110: 1800–1806

    Article  CAS  Google Scholar 

  22. Law G, Watson PR. Surface orientation in ionic liquids. Chem Phys Lett, 2001, 345: 1–4

    Article  CAS  Google Scholar 

  23. Froba AP, Wasserscheid P, Gerhard D, Kremer H, Leipertz A, Revealing the influence of the strength of coulomb interactions on the viscosity and interfacial tension of ionic liquid cosolvent mixtures. J Phys Chem B, 2007, 111: 12817–12822

    Article  Google Scholar 

  24. Scovazzo P, Kieft J, Finan DA, Koval C, DuBois D, Noble R. Gas separations using non-hexafluorophosphate [PF6] anion supported ionic liquid membranes. J Membrane Sci, 2004, 238: 57–63

    Article  CAS  Google Scholar 

  25. Roscioli JR, Nesbitt DJ. State-resolved scattering at room-temperature ionic liquid-vacuum interfaces: anion dependence and the role of dynamic versus equilibrium effects. J Phys Chem Lett, 2010, 1: 674–678

    Article  CAS  Google Scholar 

  26. Law G, Watson PR, Carmichael AJ, Seddon KR, Seddon B. Molecular composition and orientation at the surface of room-temperature ionic liquids: effect of molecular structure. Phys Chem Chem Phys, 2001, 3: 2879–2885

    Article  CAS  Google Scholar 

  27. Lockett V, Sedev R, Bassell C, Ralston J. Angle-resolved X-ray photoelectron spectroscopy of the surface of imidazolium ionic liquids. Phys Chem Chem Phys, 2008, 10: 1330–1335

    Article  CAS  Google Scholar 

  28. Ohno A, Hashimoto H, Nakajima K, Suzuki M, Kimura K. Observation of surface structure of 1-butyl-3-methylimidazolium hexafluor-ophosphate using high-resolution rutherford backscattering spectroscopy. J Chem Phys, 2009, 130: 204705

    Article  Google Scholar 

  29. Zhang Z, Guo Y, Lu Z, Velarde L, Wang HF. Resolving two closely overlapping -CN vibrations and structure in the langmuir mono layer of the long-chain nonadecanenitrile by polarization sum frequency generation vibrational spectroscopy. J Phys Chem C, 2012, 116: 2976–2987

    Article  CAS  Google Scholar 

  30. Velarde L, Zhang XY, Lu Z, Joly AG, Wang ZM, Wang HF. Communication: spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: resolving interfacial inhomogeneities of “identical” molecular groups. J Chem Phys, 2011, 135: 24110

    Article  Google Scholar 

  31. Zhuang X, Miranda PB, Kim D, Shen YR. Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys Rev B, 1999, 59: 12632–12640

    Article  CAS  Google Scholar 

  32. Wang HF, Gan W, Lu R, Rao Y, Wu BH. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int Rev Phys Chem, 2005, 24: 191–256

    Article  Google Scholar 

  33. Lu R, Gan W, Wu BH, Chen H, Wang HF. Vibrational polarization spectroscopy of CH stretching modes of the methylene group at the vapor/liquid interfaces with sum frequency generation. J Phys Chem B, 2004, 108: 7297–7306

    Article  CAS  Google Scholar 

  34. Gan W, Wu D, Zhang Z, Feng RR, Wang HF. Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface. J Chem Phys, 2006, 124: 114705

    Article  Google Scholar 

  35. Wei X, Hong SC, Zhuang XW, Goto T, Shen YR. Nonlinear optical studies of liquid crystal alignment on a rubbed polyvinyl alcohol surface. Phys Rev E, 2000, 62: 5160–5172

    Article  CAS  Google Scholar 

  36. Rivera-Rubero S, Baldelli S. Surface characterization of 1-butyl-3-methylimidazollum Br, I, PF6 , BF4 , (CF3SO2)2N, SCN, CH3SO3 , CH3SO4 , and (CN)2N ionic liquids by sum frequency generation. J Phys Chem B, 2006, 110: 4756–4765

    Article  CAS  Google Scholar 

  37. Iwahashi T, Sakai Y, Kanai K, Kim D, Ouchi Y. Alkyl-chain dividing layer at an alcohol/ionic liquid buried interface studied by sumfrequency generation vibrational spectroscopy. Phys Chem Chem Phys, 2010, 12: 12943–12946

    Article  CAS  Google Scholar 

  38. Gan W, Wu BH, Zhang Z, Guo Y, Wang HF. Vibrational spectra and molecular orientation with experimental configuration analysis in surface sum frequency generation (SFG). J Phys Chem C, 2007, 111: 8716–8725

    Article  CAS  Google Scholar 

  39. Gan W, Zhang Z, Feng RR, Wang HF. Spectral interference and molecular conformation at liquid interface with sum frequency generation vibrational spectroscopy (SFG-VS). J Phys Chem C, 2007, 111: 8726–8738

    Article  CAS  Google Scholar 

  40. Rollins JB, Fitchett BD, Conboy JC. Structure and orientation of the imidazolium cation at the room-temperature ionic liquid/sio2 interface measured by sum-frequency vibrational spectroscopy. J Phys Chem B, 2007, 111: 4990–4999

    Article  CAS  Google Scholar 

  41. Deng GH, Li X, Guo YQ, Liu SL, Lu Z, Guo Y. Orientation and structure of ionic liquid cation at air/bmirn BF4 aqueous solution interface. Chin J Chem Phys, 2013, 26: 569–575

    Article  CAS  Google Scholar 

  42. Cammarata L, Kazarian SG, Salter PA, Welton T. Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys, 2001, 3: 5192–5200

    Article  CAS  Google Scholar 

  43. Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem Soc Rev, 2008, 37: 123–150

    Article  CAS  Google Scholar 

  44. Zhou F, Liang Y, Liu W. Ionic liquid lubricants: designed chemistry for engineering applications. Chem Soc Rev, 2009, 38: 2590–2599

    Article  CAS  Google Scholar 

  45. Han X, Armstrong DW. Ionic liquids in separations. Acc Chem Res, 2007, 40: 1079–1086

    Article  CAS  Google Scholar 

  46. Galinski M, Lewandowski A, Stepniak I. Ionic liquids as electrolytes. Electrochim Acta, 2006, 51: 5567–5580

    Article  CAS  Google Scholar 

  47. Sakaebe H, Matsumoto H. N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide (PP 13-TFSI): novel electrolyte base for Li battery. Electrochem Commun, 2003, 5: 594–598

    Article  CAS  Google Scholar 

  48. Baldelli S. Surface structure at the ionic liquid-electrified metal interface. Acc Chem Res, 2008, 41: 421–431

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhou Lu or Yuan Guo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, G., Guo, Y., Li, X. et al. Surface of room temperature ionic liquid [bmim][PF6] studied by polarization- and experimental configuration-dependent sum frequency generation vibrational spectroscopy. Sci. China Chem. 58, 439–447 (2015). https://doi.org/10.1007/s11426-014-5241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5241-5

Keywords

Navigation