Skip to main content
Log in

Self-assembly of surfactant-like peptides and their applications

  • Reviews
  • Special Topic Biophysical Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Numerous peptides derived from naturally occurring proteins or de novo designed have been found to self-assemble into various nanostructures. These well-defined nanostructures have shown great potential for a variety of biomedical and biotechnological applications. In particular, surfactant-like peptides (SLPs) have distinctive advantages in their length, aggregating ability, and water solubility. In this article, we report recent advances in the mechanistic understanding of the self-assembly principles of SLPs and in their applications, most of which have been made in our laboratory. Hydrogen bonding between peptide backbones, hydrophobic interaction between hydrophobic side chains, and electrostatic repulsion between charged head groups all have roles in mediating the self-assembly of SLPs; the final self-assembled nanostructures are therefore dependent on their interplay. SLPs have shown diverse applications ranging from membrane protein stabilization and antimicrobial/anticancer agents to nanofabrication and biomineralization. Future advances in the self-assembly of SLPs will hinge on their large-scale production, the design of new functional SLPs with targeted properties, and the exploitation of new or improved applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitesides GM, Grzybowski B. Self-assembly at all scales. Science, 2002, 295: 2418–2421

    Article  CAS  Google Scholar 

  2. Whitesides GM, Boncheva M. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA, 2002, 99: 4769–4774

    Article  CAS  Google Scholar 

  3. Dobson CM. Protein folding and misfolding. Nature, 2003, 426: 884–890

    Article  CAS  Google Scholar 

  4. Winfree E, Liu F, Wenzler LA, Seeman NC. Design and self-assembly of two-dimensional DNA crystals. Nature, 1998, 394: 539–544

    Article  CAS  Google Scholar 

  5. Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440: 297–302

    Article  CAS  Google Scholar 

  6. Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N. Self-assembling organic nanotubes based on a cyclic peptide archi tecture. Nature, 1993, 366: 324–347

    Article  CAS  Google Scholar 

  7. Zhang S, Holmes T, Lockshin C, Rich A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci USA, 1993, 90: 3334–3338

    Article  CAS  Google Scholar 

  8. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294: 1684–1688

    Article  CAS  Google Scholar 

  9. Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003, 300: 625–627

    Article  CAS  Google Scholar 

  10. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotech, 2003, 21: 1171–1178

    Article  CAS  Google Scholar 

  11. Schnur JM. Lipid tubules: a paradigm for molecularly engineered structures. Science, 1993, 262: 1669–1676

    Article  CAS  Google Scholar 

  12. Gazit E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev, 2007, 36: 1263–1269

    Article  CAS  Google Scholar 

  13. Zhao X, Zhang S. Molecular designer self-assembling peptides. Chem Soc Rev, 2006, 35: 1105–1110

    Article  CAS  Google Scholar 

  14. Ulijn RV, Smith AM. Designing peptide based nanomaterials. Chem Soc Rev, 2008, 37: 664–675

    Article  CAS  Google Scholar 

  15. Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser CAE, Zhang S, Lu JR. Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev, 2010, 39: 3480–3498

    Article  CAS  Google Scholar 

  16. Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers, 2010, 94: 1–18

    Article  CAS  Google Scholar 

  17. Yan X, Zhu P, Li J. Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev, 2010, 39: 1877–1890

    Article  CAS  Google Scholar 

  18. Hamley IW. Self-assembly of amphiphilic peptides. Soft Matter, 2011, 7: 4122–4138

    Article  CAS  Google Scholar 

  19. Loo Y, Zhang S, Hauser CAE. From short peptides to nanofibers to macromolecular assemblies in biomedicine. Biotechnol Adv, 2012, 30: 593–603

    Article  CAS  Google Scholar 

  20. Hosseinkhani H, Hong PD, Yu DS. Self-assembled proteins and peptides for regenerative medicine. Chem Rev, 2013, 113: 4837–4861

    Article  CAS  Google Scholar 

  21. Fichman G, Gazit E. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications. Acta Biomater, 2014, 10: 1671–1682

    Article  CAS  Google Scholar 

  22. Ghadiri MR, Granja JR, Buehler LK. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature, 1994, 369: 301–304

    Article  CAS  Google Scholar 

  23. Fernandez-Lopez S, Kim HS, Choi EC, Delgado M, Granja JR, Khasanov A, Kraehenbuehl K, Long G, Weinberger DA, Wilcoxen KM, Ghadiri MR. Antibacterial agents based on the cyclic D,L-α-peptide architecture. Nature, 2001, 412: 452–455

    Article  CAS  Google Scholar 

  24. Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci USA, 2002, 99: 9996–10001

    Article  CAS  Google Scholar 

  25. Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci USA, 2000, 97: 6728–6733

    Article  CAS  Google Scholar 

  26. Koutsopoulos S, Unsworth LD, Nagai Y, Zhang S. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci USA, 2009, 106: 4623–4628

    Article  CAS  Google Scholar 

  27. Aggeli A, Bell M, Boden N, Keen JN, Knowles PF, McLeish TCB, Pitkeathly M, Radford SE. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes. Nature, 1997, 386: 259–262

    Article  CAS  Google Scholar 

  28. Collier JH, Messersmith PB. Enzymatic modification of self-assembled structures with tissue transglutaminase. Bioconjugate Chem, 2003, 14: 748–755

    Article  CAS  Google Scholar 

  29. Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA, 2002, 99: 5133–5138

    Article  CAS  Google Scholar 

  30. Cui H, Muraoka T, Cheetham AG, Stupp SI. Self-assembly of giant peptide nanobelts. Nano Lett, 2009, 9: 945–952

    Article  CAS  Google Scholar 

  31. Zhang S, Greenfield MA, Mata A, Palmer LC, Bitton R, Mantei JR, Aparicio C, de la Cruz MO, Stupp SI. A self-assembly pathway to aligned monodomain gels. Nat Mater, 2010, 9: 594–601

    Article  CAS  Google Scholar 

  32. Makovitzki A, Baram J, Shai Y. Antimicrobial lipopolypeptides composed of palmitoyl di- and tricationic peptides: in vitro and in vivo activities, self-assembly to nanostructures, and a plausible mode of action. Biochemistry, 2008, 47: 10630–10636

    Article  CAS  Google Scholar 

  33. Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc, 2002, 124: 15030–15037

    Article  CAS  Google Scholar 

  34. Haines-Butterick L, Rajagopal K, Branco M, Salick D, Rughani R, Pilarz M, Lamm MS, Pochan DJ, Schneider JP. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc Natl Acad Sci USA, 2007, 104: 7791–7796

    Article  CAS  Google Scholar 

  35. Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV. Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π-π interlocked β-sheets. Adv Mater, 2008, 20: 37–41

    Article  CAS  Google Scholar 

  36. Lu K, Jacob J, Thiyagarajan P, Conticello VP, Lynn DG. Exploiting amyloid fibril lamination for nanotube self-assembly. J Am Chem Soc, 2003, 125: 6391–6393

    Article  CAS  Google Scholar 

  37. Tao K, Wang J, Zhou P, Wang C, Xu H, Zhao X, Lu JR. Self-assembly of short Aβ (16-22) peptides: effect of terminal capping and the role of electrostatic interaction. Langmuir, 2011, 27: 2723–2730

    Article  CAS  Google Scholar 

  38. Dong H, Paramonov SE, Aulisa L, Bakota EL, Hartgerink JD. Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructures. J Am Chem Soc, 2007, 129: 12468–12472

    Article  CAS  Google Scholar 

  39. Bakota E, Wang Y, Danesh FR, Hartgerink JD. Injectable multidomain peptide nanofiber hydrogel as a delivery agent for stem cell secretome. Biomacromolecules, 2011, 12: 1651–1657

    Article  CAS  Google Scholar 

  40. Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF, Woolfson DN. Rational design and application of responsive α-helical peptide hydrogels. Nat Mater, 2009, 8: 596–600

    Article  CAS  Google Scholar 

  41. Vauthey S, Santoso S, Gong H, Watson N, Zhang S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc Natl Acad Sci USA, 2002, 99: 5355–5360

    Article  CAS  Google Scholar 

  42. Santoso S, Hwang W, Hartman H, Zhang S. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett, 2002, 2: 687–691

    Article  CAS  Google Scholar 

  43. von Maltzahn G, Vauthey S, Santoso S, Zhang S. Positively charged surfactant-like peptides self-assembly into nanostructures. Langmuir, 2003, 19: 4332–4337

    Article  Google Scholar 

  44. Kiley P, Zhao X, Vaughn M, Baldo MA, Bruce BD, Zhang S. Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time. PLoS Biol, 2005, 3: e230

    Article  Google Scholar 

  45. Koutsopoulos S, Kaiser L, Maria H, Eriksson M, Zhang S. Designer peptide surfactants stabilize diverse functional membrane proteins. Chem Soc Rev, 2012, 41: 1721–1728

    Article  CAS  Google Scholar 

  46. Mishra A, Loo Y, Deng R, Chuah Y J, Hee HT, Ying JY, Hauser CAE. Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering. Nano Today, 2011, 6: 232–239

    Article  CAS  Google Scholar 

  47. Xu H, Wang Y, Ge X, Han S, Wang S, Zhou P, Shan H, Zhao X, Lu JR. Twisted nanotubes formed from ultrashort amphiphilic peptide I3K and their templating for the fabrication of silica nanotubes. Chem Mater, 2010, 22: 5165–5173

    Article  CAS  Google Scholar 

  48. Bucak S, Cenker C, Nasir I, Olsson U, Zackrisson M. Peptide nanotube nematic phase. Langmuir, 2009, 25: 4262–4265

    Article  CAS  Google Scholar 

  49. Nagai A, Nagai Y, Qu H, Zhang S. Dynamic behaviors of lipid-like self-assembling peptide A6D and A6K nanotubes. J Nanosci Nanotech, 2007, 7: 1–7

    Article  Google Scholar 

  50. Yang SJ, Zhang S. Self-assembling behavior of designer lipid-like peptides. Supramol Chem, 2006, 18: 389–396

    Article  CAS  Google Scholar 

  51. van Hell AJ, Costa CICA, Flesch FM, Sutter M, Jiskoot W, Crommelin DJA, Hennink WE, Mastrobattista E. Self-assembly of recom binant amphiphilic oligopeptides into vesicles. Biomacromolecules, 2007, 8: 2753–2761

    Article  Google Scholar 

  52. Khoe U, Yang Y, Zhang S. Self-assembly of nanodonut structure from a cone-shaped designer lipid-like peptide surfactant. Langmuir, 2009, 25: 4111–4114

    Article  CAS  Google Scholar 

  53. Wang J, Han S, Meng G, Xu H, Xia D, Zhao X, Schweins R, Lu JR. Dynamic self-assembly of surfactant-like peptides A6K and A9K. Soft Matter, 2009, 5: 3870–3878

    Article  CAS  Google Scholar 

  54. Han S, Cao S, Wang Y, Wang J, Xia D, Xu H, Zhao X, Lu JR. Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding. Chem Eur J, 2011, 17: 13095–13102

    Article  CAS  Google Scholar 

  55. Han S, Xu W, Cao M, Wang J, Xia D, Xu H, Zhao X, Lu JR. Interfacial adsorption of cationic peptide amphiphiles: a combined study of in situ spectroscopic ellipsometry and liquid AFM. Soft Matter, 2012, 8: 645–653

    Article  CAS  Google Scholar 

  56. Baumann MK, Textor M, Reimhult E. Understanding self-assembled amphiphilic peptide supramolecular structures form primary structure helix propensity. Langmuir, 2008, 24: 7645–7647

    Article  CAS  Google Scholar 

  57. Hauser CAE, Deng R, Mishra A, Loo Y, Khoe U, Zhuang F, Cheong DW, Accardo A, Sullivan MB, Riekel C, Ying JY, Hauser UA. Natural tri-to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proc Natl Acad Sci USA, 2011, 108: 1361–1366

    Article  CAS  Google Scholar 

  58. Xu H, Wang J, Han S, Wang J, Yu D, Zhang H, Xia D, Zhao X, Waigh TA, Lu JR. Hydrophobic-region-induced transitions in self-assembled peptide nanostructures. Langmuir, 2009, 25: 4115–4123

    Article  CAS  Google Scholar 

  59. Khoe U, Yang Y, Zhang S. Synergetic effect and hierarchical nanostructure formation in mixing two designer lipid-like peptide surfactants Ac-A6D-OH and Ac-A6K-NH2. Macromol Bio Sci, 2008, 8: 1060–1067

    Article  CAS  Google Scholar 

  60. Zhao Y, Wang J, Deng L, Zhou P, Wang S, Wang Y, Xu H, Lu JR. Tuning the self-assembly of short peptides via sequence variations. Langmuir, 2013, 29: 13457–13464

    Article  CAS  Google Scholar 

  61. Ge B, Yang F, Yu D, Liu S, Xu H. Designer amphiphilic short peptides enhance thermal stability of isolated photosystem-I. PLoS One, 2010, 5: e10233

    Article  Google Scholar 

  62. Wang S, Ge X, Xue J, Fan H, Mu L, Li Y, Xu H, Lu JR. Mechanistic processes underlying biomimetic synthesis of silica nanotubes from self-assembled ultrashort peptide templates. Chem Mater, 2011, 23: 2466–2474

    Article  CAS  Google Scholar 

  63. Wang S, Xue J, Ge X, Fan H, Xu H, Lu JR. Biomimetic synthesis of silica nanostructures with controllable morphologies and sizes through interfacial interactions. Chem Commun, 2012, 48: 9415–9417

    Article  CAS  Google Scholar 

  64. Tao K, Wang J, Li Y, Xia D, Shan H, Xu H, Lu JR. Short peptide-directed synthesis of one-dimensional platinum nanostructures with controllable morphologies. Sci Rep, 2013, 3: 2565

    Google Scholar 

  65. Chen C, Pan F, Zhang S, Hu J, Cao M, Wang J, Xu H, Zhao X, Lu JR. Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromolecules, 2010, 11: 402–411

    Article  CAS  Google Scholar 

  66. Chen C, Hu J, Zhang S, Zhou P, Zhao X, Xu H, Zhao X, Yaseen M, Lu JR. Molecular mechanism of antibacterial and antitumor actions of designer surfactant-like peptides. Biomaterials, 2012, 33: 592–603

    Article  CAS  Google Scholar 

  67. Xu H, Chen C, Hu J, Zhou P, Zeng P, Cao C, Lu JR. Dual modes of antitumor action of an amphiphilic peptide A9K. Biomaterials, 2013, 34: 2731–2737

    Article  CAS  Google Scholar 

  68. Hamley IW, Dehsorkhi A, Castellotto V. Self-assembled arginine-coated peptide nanosheets in water. Chem Commn, 2013, 49: 1850–1852

    Article  CAS  Google Scholar 

  69. Dehsorkhi A, Castelletto V, Hamley IW. Interaction between a cationic surfactant-like peptide and lipid vesicles and its relationship to antimicrobial activity. Langmuir, 2013, 29: 14246–14253

    Article  CAS  Google Scholar 

  70. Huang R, Qi W, Su R, Zhao J, He Z. Solvent and surface controlled self-assembly of diphenylalanine peptide: from microtubes to nanofibers. Soft Matter, 2011, 7: 6418–6421

    Article  CAS  Google Scholar 

  71. Nagarajan R, Ruckenstein E. Theory of surfactant self-assembly: a predictive molecular thermodynamic approach. Langmuir, 1991, 7: 2934–2969

    Article  CAS  Google Scholar 

  72. Daniel L, Minor J, Kim PS. Measurement of the β-sheet-forming propensities of amino acids. Nature, 1994, 367: 660–663

    Article  Google Scholar 

  73. Nagarajan R. Molecular packing parameters and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir, 2002, 18: 31–38

    Article  CAS  Google Scholar 

  74. Cao M, Wang Y, Ge X, Cao C, Wang J, Xu H, Xia D, Zhao X, Lu JR. Effects of anions on nanostructuring of cationic amphiphilic peptides. J Phys Chem B, 2011, 115: 11862–11871

    Article  CAS  Google Scholar 

  75. Zhao X, Nagai Y, Reeves PJ, Kiley P, Khorana HG, Zhang S. Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc Natl Acad Sci USA, 2006, 103: 17707–17712

    Article  CAS  Google Scholar 

  76. Wallin E, Heijne GV. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci, 1998, 7: 1029–1038

    Article  CAS  Google Scholar 

  77. Loll PJ. Membrane protein structural biology: the high throughput challenge. J Struct Biol, 2003, 142:144–153

    Article  CAS  Google Scholar 

  78. Nilsson J, Persson B, von Heijne G. Comparative analysis of amino acid distributions in integral membrane proteins from 107 genomes. Proteins, 2005, 60: 606–616

    Article  CAS  Google Scholar 

  79. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415: 389–395

    Article  CAS  Google Scholar 

  80. Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. BBA-Biomembranes, 1999, 1462: 71–87

    Article  CAS  Google Scholar 

  81. Castelletto V, Hamley IW, Segarra-Maset MD, Gumbau CB, Miravet JF, Escuder B, Seitsonen J, Ruokolainen J. Tuning chelation by the surfactant-like peptide A6H using predetermined pH values. Biomacromolecules, 2014, 15: 591–598

    Article  CAS  Google Scholar 

  82. Castelletto V, Gouveia RM, Connon CJ, Hamley IW, Seitsonen J, Nykänen A, Ruokolainen J. Alanine-rich amphiphilic peptide containing the RGD cell adhesion motif: a coating material for human fibroblast attachment and culture. Biomater Sci, 2014, 2: 362–369

    Article  CAS  Google Scholar 

  83. Bakota EL, Aulisa L, Galler KM, Hartgerink JD. Enzymatic cross-linking of a nanofibrous peptide hydrogel. Biomacromolecules, 2011, 12: 82–87

    Article  CAS  Google Scholar 

  84. Teixeira LSM, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials, 2012, 33: 1281–1290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhao, Y., Han, S. et al. Self-assembly of surfactant-like peptides and their applications. Sci. China Chem. 57, 1634–1645 (2014). https://doi.org/10.1007/s11426-014-5234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5234-4

Keywords

Navigation