Skip to main content
Log in

Two-dimensional photovoltaic copolymers with spatial D-A-D structures: synthesis, characterization and hetero-atom effect

  • Articles
  • Special Issue Organic Photovoltaics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of two-dimensional (2D) conjugated copolymers with spatial D-A-D structures (PTNBTB, PTCBTB, and PTSBTB) consisting of hetero-atom-bridged dithiophene and phenylvinyl-substituted benzothiadiazole blocks in the main chain have been designed, synthesized, and characterized. The structure-property relationships of the resulting copolymers were systematically investigated. The effects of the bridging atoms (N, C, and Si) on their thermal, optical, electrochemical and charge-transporting properties were also studied. PTNBTB exhibits a smaller band gap with red-shifted absorption, whereas PTSBTB possesses deeper HOMO level and higher hole mobility than PTCBTB or PTSBTB. Bulk heterojunction (BHJ) solar cells were fabricated and characterized with the conventional configuration of ITO/PEDOT:PSS/copolymer:PC71BM (1:1)/Ca/Al. As expected, PTSBTB devices showed the highest PCE, up to 4.01%, which was due to the lower HOMO level, higher carrier mobility, and stronger optical response as well as the finer nanoscale phase separation of the pristine polymer and/or the corresponding blending active layer with PC71BM. The primary results offer useful insights in designing 2D copolymers with spatial D-A-D backbone and different hetero-atom bridged donor units to finely tune the absorptions, electronic energy levels, carrier mobilities and the photovoltaic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Günes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev, 2007, 107: 1324–1338

    Article  Google Scholar 

  2. Cheng YJ, Yang SH, Hsu CS. Synthesis of conjugated polymers for organic solar cell applications. Chem Rev, 2009, 109: 5868–5923

    Article  CAS  Google Scholar 

  3. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donoracceptor heterojunctions. Science, 1995, 270: 1789–1791

    Article  CAS  Google Scholar 

  4. Hou JH, Chen HY, Zhang S, Li G, Yang Y. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J Am Chem Soc, 2008, 130: 16144–16145

    Article  CAS  Google Scholar 

  5. Roncali J. Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev, 1997, 97: 173–206

    Article  CAS  Google Scholar 

  6. Li YF, Zou YP. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv Mater, 2008, 20: 2952–2958

    Article  CAS  Google Scholar 

  7. Chen JW, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res, 2009, 42: 1709–1718

    Article  CAS  Google Scholar 

  8. You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y. A polymer tandem solar cell with 10. 6% power conversion efficiency. Nat Commun, 2013, 4: 1446–1455

    Article  Google Scholar 

  9. Cabanetos C, Labban A, Bartelt JA, Douglas JD, Mateker WR, Fréchet JMJ, McGehee MD, Beaujuge PM. Linear side chains in benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. J Am Chem Soc, 2013, 135: 4656–4659

    Article  CAS  Google Scholar 

  10. Dou L, Gao J, Richard E, You J, Chen CC, Cha KC, He Y, Li G, Yang Y. Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. J Am Chem Soc, 2012, 134: 10071–10079

    Article  CAS  Google Scholar 

  11. Osaka I, Kakara T, Takemura N, Koganezawa T, Takimiya K. Naphthodithiophene-naphthobisthiadiazole copolymers for solar cells: alkylation drives the polymer backbone flat and promotes efficiency. J Am Chem Soc, 2013, 135: 8834–8837

    Article  CAS  Google Scholar 

  12. Wang N, Chen Z, Wei W, Jiang Z. Fluorinated benzothiadiazole-based bonjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments. J Am Chem Soc, 2013, 135: 17060–17068

    Article  CAS  Google Scholar 

  13. Li K, Li ZJ, Feng K, Xu XP, Wang LY, Peng Q. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells. J Am Chem Soc, 2013, 135: 13549–13557

    Article  CAS  Google Scholar 

  14. Hou JH, Huo LJ, He C, Yang CH, Li YF. Synthesis and absorption spectra of poly(3-(phenylenevinyl)thiophene)s with conjugated side chains. Macromolecules, 2006, 39: 594–603

    Article  CAS  Google Scholar 

  15. Hou JH, Tan ZA, Yan Y, He YJ, Yang CH, Li YF. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. J Am Chem Soc, 2006, 128: 4911–4916

    Article  CAS  Google Scholar 

  16. Zou YP, Wu WP, Sang GY, Yang Y, Liu YQ, Li YF. Polythiophene derivative with phenothiazine-vinylene conjugated side chain: synthesis and its application in field-effect transistors. Macromolecules, 2007, 40: 7231–7237

    Article  CAS  Google Scholar 

  17. Zhou EJ, Tan ZA, Yang Y, Hou LJ, Zou YP, Yang CH, Li YF. Synthesis, hole mobility, and photovoltaic properties of cross-linked polythiophenes with vinylene-terthiophene-vinylene as conjugated bridge. Macromolecules, 2007, 40: 1831–1837

    Article  CAS  Google Scholar 

  18. Zou YP, Sang GY, Wu WP, Liu YQ, Li YF. A polythiophene derivative with octyloxyl triphenylamine-vinylene conjugated side chain: synthesis and its applications in field-effect transistor and polymer solar cell. Synth Met, 2009, 159: 182–187

    Article  CAS  Google Scholar 

  19. Li WW, Han Y, Chen YL, Li CH, Li BS, Bo ZS. Polythiophenes with carbazole side chains: design, synthesis and their application in organic solar cells. Macromol Chem Phys, 2010, 211: 948–955

    Article  CAS  Google Scholar 

  20. Sang GY, Zou YP, Li YF. Two polythiophene derivatives containing phenothiazine units: synthesis and photovoltaic properties. J Phys Chem C, 2008, 112: 12058–12064

    Article  CAS  Google Scholar 

  21. Chang YT, Hsu SL, Su MH, Wei KH. Soluble phenanthrenyl-imidazole-presenting regioregular poly(3-octylthiophene) copolymers having tunable bandgaps for solar cell applications. Adv Funct Mater, 2007, 17: 3326–3331

    Article  CAS  Google Scholar 

  22. Chang YT, Hsu SL, Su MH, Wei KH. Intramolecular donor-acceptor regioregular poly(hexylphenanthrenyl-imidazole thiophene) exhibits enhanced hole mobility for heterojunction solar cell applications. Adv Mater, 2009, 21: 2093–2097

    Article  CAS  Google Scholar 

  23. Huo LJ, Hou JH, Zhang S, Chen HY, Yang Y. A polybenzo[1,2-b:4,5-b′]dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. Angew Chem Int Ed, 2010, 49: 1500–1503

    Article  CAS  Google Scholar 

  24. Peng Q, Liu XJ, Su D, Fu GW, Xu J, Dai LM. Novel benzo[1,2-b:4,5-b′]dithiophene-benzothiadiazole derivatives with variable side chains for high-performance solar cells. Adv Mater, 2011, 23: 4554–4558

    Article  CAS  Google Scholar 

  25. Wang M, Hu X, Liu P, Li W, Gong X, Huang F, Cao Y. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis-[1,2,5]thiadiazole for high-performance polymer solar cells. J Am Chem Soc, 2011, 133: 9638–9641

    Article  CAS  Google Scholar 

  26. Min J, Zhang ZG, Zhang S, Li YF. Conjugated side-chain-isolated D-A copolymers based on benzo[1,2-b:4,5-b′]dithiophene-alt-dithienylbenzotriazole: synthesis and photovoltaic properties. Chem Mater, 2012, 24: 3247–3254

    Article  CAS  Google Scholar 

  27. Huo LJ, Zhang SQ, Guo X, Xu F, Li YF, Hou JH. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angew Chem Int Ed, 2011, 50: 9697–9702

    Article  CAS  Google Scholar 

  28. Huo LJ, Guo X, Zhang SQ, Li YF, Hou JH. PBDTTTZ: a broad band gap conjugated polymer with high photovoltaic performance in polymer solar cells. Macromolecules, 2011, 44: 4035–4037

    Article  CAS  Google Scholar 

  29. Huo LJ, Ye L, Wu Y, Li ZJ, Guo X, Zhang MJ, Zhang SQ, Hou JH. Conjugated and nonconjugated substitution effect on photovoltaic properties of benzodifuran-based photovoltaic polymers. Macromolecules, 2012, 45: 6923–6929

    Article  CAS  Google Scholar 

  30. Huang F, Chen KS, Yip HL, Hau SK, Acton O, Zhang Y, Luo JD, Jen AKY. Development of new conjugated polymers with donor-π-bridge-acceptor side chains for high performance solar cells. J Am Chem Soc, 2009, 131: 13886–13887

    Article  CAS  Google Scholar 

  31. Duan CH, Cai WZ, Huang F, Zhang J, Wang M, Yang TB, Zhong CM, Gong X, Cao Y. Novel silafluorene-based conjugated polymers with pendant acceptor groups for high performance solar cells. Macromolecules, 2010, 43: 5262–5268

    Article  CAS  Google Scholar 

  32. Duan CH, Chen KS, Huang F, Yip HL, Liu SJ, Zhang J, Jen AKY, Cao Y. Synthesis, characterization, and photovoltaic properties of carbazole-based two-dimensional conjugated polymers with donor-π-bridge-acceptor side chains. Chem Mater, 2010, 22: 6444–6452

    Article  CAS  Google Scholar 

  33. Zhang ZG, Liu YL, Yang Y, Hou K, Peng B, Zhao G, Zhang M, Guo X, Kang ET, Li YF. Alternating copolymers of carbazole and triphenylamine with conjugated side chain attaching acceptor groups: synthesis and photovoltaic application. Macromolecules, 2010, 43: 9376–9384

    Article  CAS  Google Scholar 

  34. Hsu SL, Chen CM, Wei KH. Carbazole-based conjugated polymers incorporating push/pull organic dyes: synthesis, characterization, and photovoltaic applications. J Polym Sci Part A Polym Chem, 2010, 48: 5126–5134

    Article  CAS  Google Scholar 

  35. Sahu D, Padhy H, Patra D, Huang JH, Chu CW, Lin HC. Synthesis and characterization of novel low-bandgap triphenylamine-based conjugated polymers with main-chain donors and pendent acceptors for organic photovoltaics. J Polym Sci Part A Polym Chem, 2010, 48: 5812–5823

    Article  CAS  Google Scholar 

  36. Fan HJ, Zhang ZG, Li YF, Zhan XW. Copolymers of fluorene and thiophene with conjugated side chain for polymer solar cells: effect of pendant acceptors. J Polym Sci Part A Polym Chem, 2011, 49: 1462–1470

    Article  CAS  Google Scholar 

  37. Tan H, Deng XP, Yu JT, Zhao BF, Wang YF, Liu Y, Zhu WG, Wu WB, Cao Y. A novel benzo[1,2-b:4,5-b′]dithiophene-based conjugated polymer with a pendant diketopyrrolopyrrole unit for high-performance solar cells. Macromolecules, 2013, 46: 113–118

    Article  CAS  Google Scholar 

  38. Tan H, Yu JT, Wang YF, Chen JH, Tao Q, Liu Y, Huang J, Zhu WG. A new donor-acceptor-donor ternary copolymer pending additional diketopyrrolopyrrole unit in the side of a donor for efficient solar cells. Org Electro, 2013, 14: 1510–1515

    Article  CAS  Google Scholar 

  39. Peng Q, Lim SL, Wong IHK, Xu J, Chen ZK. Synthesis and photovoltaic properties of two-dimensional low-bandgap copolymers based on new benzothiadiazole derivatives with different conjugated arylvinylene side chains. Chem Eur J, 2012, 18: 12140–12151

    Article  CAS  Google Scholar 

  40. Peng Q, Fu YY, Liu XJ, Xu J, Xie ZY. Two dimensional photovoltaic copolymers based on new benzothiadiazole acceptors with diphenylamine-vinylene side chains. Polym Chem, 2012, 3: 2933–2940

    Article  CAS  Google Scholar 

  41. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater, 2007, 6: 497–500

    Article  CAS  Google Scholar 

  42. Li ZJ, Zou D, Li LX, Li Y, He YJ, Liu J, Peng Q. Synthesis and characterization of copolymers based on benzotriazoles and different atom-bridged dithiophenes for efficient solar cells. Polym Chem, 2013, 4: 2496–2505

    Article  CAS  Google Scholar 

  43. Zhu Y, Champion RD, Jenekhe SA. Conjugated donor-acceptor copolymer semiconductors with large intramolecular charge transfer: synthesis, optical properties, electrochemistry, and field effect carrier mobility of thienopyrazine-based copolymers. Macromolecules, 2006, 39: 8712–8719

    Article  CAS  Google Scholar 

  44. Zhou EJ, Nakamura M, Nishizawa T, Zhang Y, Wei QS, Tajima K, Yang CH, Hashimoto K. Synthesis and photovoltaic properties of a novel low band gap polymer based on N-substituted dithieno[3,2-b:2′,3′-d]pyrrole. Macromolecules, 2008, 41: 8302–8305

    Article  CAS  Google Scholar 

  45. Price SC, Stuart AC, You W. Low band gap polymers based on benzo[1,2-b:4,5-b′]dithiophene: rational design of polymers leads to high photovoltaic performance. Macromolecules, 2010, 43: 4609–4612

    Article  CAS  Google Scholar 

  46. Li YF, Cao Y, Gao J, Wang DL, Yu G, Heeger AJ. Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells. Synth Met, 1999, 99: 243–248

    Article  CAS  Google Scholar 

  47. Brabec CJ, Winder C, Sariciftci NS, Hummelen JC, Dhanabalan A, van Hal PA, Janssen RAJ. A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. Adv Funct Mater, 2002, 12: 709–712

    Article  CAS  Google Scholar 

  48. Shrotriya V, Yao Y, Li G, Yang Y. Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Appl Phys Lett, 2006, 89: 0635051–0635053

    Article  Google Scholar 

  49. Koster LJA, Shaheen SE, Hummelen JC. Pathways to a new efficiency regime for organic solar cells. Adv Energy Mater, 2012, 2: 1246–1253

    Article  CAS  Google Scholar 

  50. Janssen RAJ, Nelson J. Factors Limiting device efficiency in organic photovoltaics. Adv Mater, 2013, 25: 1847–1858

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, X., Li, Z. et al. Two-dimensional photovoltaic copolymers with spatial D-A-D structures: synthesis, characterization and hetero-atom effect. Sci. China Chem. 58, 276–285 (2015). https://doi.org/10.1007/s11426-014-5209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5209-5

Keywords

Navigation