Skip to main content
Log in

Stereoselective synthesis of cis- and trans-4-acyl-β-lactams from vicinal diketones and ketoaldehydes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

4-Acyl-β-lactams are important synthetic intermediates in both pharmaceutical and organic chemistry. Cis- and trans-4-acyl-β-lactams were synthesized stereoselectively from vicinal diketones via the formation of bulky and less bulky diimines as key intermediates, respectively. The diimines reacted with acyl chloride in the presence of triethylamine to give rise to the corresponding 4-imino-β-lactams, which were further hydrolyzed to afford 4-acyl-β-lactams. The cis- and trans selectivity is depended on the steric hindrance of the imine N-substituents. A series of cis-4-acyl-β-lactams were synthesized from vicinal ketoaldehydes via the formation of their monoimines and diimines as intermediates. Pyruvic aldehyde produced cis-4-acetyl-β-lactams and cis-4-formyl-β-lactams, respectively, through the reactions of its monoimine and diimine with acyl chlorides. Phenylglyoxal generated cis-4-benzoyl-β-lactams via its monoaldimine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alcaide B, Almendros P. 4-Oxoazetidine-2-carbaldehydes as useful building blocks in stereocontrolled synthesis. Chem Soc Rev, 2001, 30: 226–240

    Article  CAS  Google Scholar 

  2. Alcaide B, Almendros P, Aragoncillo C. β-Lactams: Versatile building blocks for the stereoselective synthesis of non-β-lactam products. Chem Rev, 2007, 107: 4437–4492

    Article  CAS  Google Scholar 

  3. Palomo C, Aizpurua CJM, Ganboa I, Carreaux F, Cuevas C, Maneiro E, Ontoria JM. New synthesis of α-amino acid N-carboxy anhydrides through Baeyer-Villiger oxidation of α-keto-β-lactams. J Org Chem, 1994, 59: 3123–3130

    Article  CAS  Google Scholar 

  4. Palomo C, Aizpurua CJM, Ganboa I, Odriozola B, Urchegui R, Gorls H. Concise synthesis of α-alkyl-α-amino acids and their incorporation into peptides via β-lactam-derived α-amino acid N-carboxy anhydrides. Chem Commun, 1996: 1269–1270

  5. Robinson RP, Donahue KM. Synthesis of a peptidyl difluoro ketone bearing the aspartic acid side chain: An inhibitor of interleukin-1 converting enzyme. J Org Chem, 1992, 57: 7309–7314

    Article  CAS  Google Scholar 

  6. Palomo C, Arrieta A, CossÍo FP, Aizpurua JM, Mielgo A, Aurrekoetxea N. Highly stereoselective synthesis of α-hydroxy-β-amino acids through β-lactams: application to the synthesis of the taxol and bestatin side chains and related systems. Tetrahedron Lett, 1990, 31: 6429–6432

    Article  CAS  Google Scholar 

  7. Kale AS, Deshmukh ARAS. An efficient synthesis of 2,3-aziridino-γ-lactones from azetidin-2-ones. Synlett, 2005: 2370–2372

  8. J Alcaide B, Martın-Cantalejo Y, Rodrıguez-Lopez J, Sierra MA. New reactivity patterns of the β-lactam ring: tandem C3–C4 bond breakage-rearrangement of 4-acyl- or 4-imino-3,3-dimethoxy-2-azetidinones promoted by stannous chloride (SnCl2-2H2O). J Org Chem, 1993, 581: 4767–4770

    Article  Google Scholar 

  9. Alcaide B, Domınguez G, Martın-Domenech A, Plumet J, Monge A, Perez-Garcıa V. Ring expansion of 4-benzoyl-β-lactams. Heterocycles, 1987, 26: 1461–1466

    Article  CAS  Google Scholar 

  10. Alcaide B, Almendros P, Cabrero G, Ruiz MP. Organocatalytic ring expansion of β-lactams to γ-lactams through a novel N1-C4 bond cleavage. Direct synthesis of enantiopure succinimide derivatives. Org Lett, 2005, 7: 3981–3984

    Article  CAS  Google Scholar 

  11. Alcaide B, Almendros P, Cabreroa G, Ruiza MP. Direct organocatalytic synthesis of enantiopure succinimides from β-lactam aldehydes through ring expansion promoted by azolium salt precatalysts. Chem Commun, 2007: 4788–4790

  12. Li GQ, Li Y, Dai LX, You SL. N-heterocyclic carbene catalyzed ring expansion of 4-formyl-beta-lactams: Synthesis of succinimide derivatives. Org Lett, 2007, 9: 3519–3521

    Article  CAS  Google Scholar 

  13. Domingo LR, Aurell MJ, Arno M. Understanding the mechanism of the N-heterocyclic carbene-catalyzed ring-expansion of 4-formyl-β-lactams to succinimide derivatives. Tetrahedron, 2009, 65: 3432–3440

    Article  CAS  Google Scholar 

  14. Alcaide B, Aly M, Rodrıguez C, Rodrıguez-Vicente A. Basepromoted isomerization of cis-4-formyl-2-azetidinones: chemoselective C4-epimerization vs rearrangement to cyclic enaminones. J Org Chem, 2000, 65: 3453–3459

    Article  CAS  Google Scholar 

  15. Krishnaswamy D, Govande VV, Deshmukh ARAS. 4-Formylazetidin-2-ones, synthon for the facile synthesis of enantiopure 4-aminopiperidin-2-one. Synthesis, 2003: 1903–1908

  16. Bailey PD, Millwood PA, Smith PD. Asymmetric routes to substituted piperidines. Chem Commun, 1998: 633–640

  17. Parr IB, Horenstein BA. New electronic analogs of the sialyl cation: N-functionalized 4-acetamido-2,4-dihydroxypiperidines. Inhibition of bacterial sialidases. J Org Chem, 1997, 62: 7489–7494

    Article  CAS  Google Scholar 

  18. Alcaide B, Almendros P, Cabrero G, Ruiz MP. Stereocontrolled access to orthogonally protected anti,anti-4-aminopiperidine-3,5-diols through chemoselective reduction of enantiopure β-lactam cyanohydrins. J Org Chem, 2007, 72: 7980–7991

    Article  CAS  Google Scholar 

  19. Kale AS, Puranik VG, Rakeeb A, Deshmukh AS. A practical formal synthesis of d-(+)-biotin from 4-formylazetidin-2-one. Synthesis, 2007, 17: 1159–1164

    Google Scholar 

  20. Alcaide B, Almendros P, Alonso JM. A practical ruthenium-catalyzed cleavage of the allyl protecting group in amides, lactams, imides, and congeners. Chem Eur J, 2006, 12: 2874–2879

    Article  CAS  Google Scholar 

  21. Buttero PD, Molteni G, Papagnib A, Pilati T. The intramolecular aromatic nucleophilic substitution as a route to tricyclic β-lactams. Synthesis of the novel 4-oxa-7-azabicyclo[4.2.0]octane skeleton. Tetrahedron, 2003, 59: 5259–5263

    Google Scholar 

  22. Alcaide B, Almendros P, Alonso JM, Aly MF. Useful dual Diels-Alder behavior of 2-azetidinone-tethered aryl imines as azadienophiles or azadienes: A β-lactam-based stereocontrolled access to optically pure highly functionalized indolizidine systems. Chem Eur J, 2003, 99: 3415–3426

    Article  CAS  Google Scholar 

  23. Alcaide B, Almendros P, Alonso JM, Aly MF. 1,3-Dipolar cycload-dition of 2-azetidinone-tethered azomethine ylides. application to the rapid, stereocontrolled synthesis of optically pure highly functionalized pyrrolizidine systems. Chem Commun, 2000: 485–486

  24. Alcaide B, Almendros P, Alonso JM, Aly MF. Rapid and stereocontrolled synthesis of racemic and optically pure highly functionalized pyrrolizidine systems via rearrangement of 1,3-dipolar cycloadducts derived from 2-azetidinone-tethered azomethine ylides. J Org Chem, 2001, 66: 1351–1358

    Article  CAS  Google Scholar 

  25. Alcaide B, Polanco C, Sierra MA. Alkyne-Co2(CO)6 complexes in the synthesis of fused tricyclic β-lactam and azetidine system. J Org Chem, 1998, 63: 6786–6796

    Article  CAS  Google Scholar 

  26. Ojima I, Lin S, Inoue T. Miller ML, Borella CP, Geng X, Walsh JJ. Macrocycle formation by ring-closing metathesis. Application to the syntheses of novel macrocyclic taxoids. J Am Chem Soc, 2000, 122: 5343–5353

    Article  CAS  Google Scholar 

  27. Hart DJ, Lee CS. Asymmetric synthesis of β-lactams and the carbapenem antibiotic (+)-PS-5. J Am Chem Soc, 1986, 108: 6054–6056

    Article  CAS  Google Scholar 

  28. Georg GI, Kant J, Gill HS. Symmetric synthesis of (1′R,3R,4R)-4-acetoxy-3-[1′-((tert-butyldimethylsilyl)oxy)ethyl]-2-azetidinone and other 3-(1’-hydroxyethyl)-2-azetidinones from (S)-(+)-ethyl 3-hydroxybutanoate: formal total synthesis of (+)-thienamycin. J Am Chem Soc, 1987, 109: 1129–1135

    Article  CAS  Google Scholar 

  29. Evans DA, Sjogren EB. The asymmetric synthesis of β-lactam antibiotics II The first enantioselective synthesis of the carbacephaloporin nucleus. Tetrahedron Lett, 1985, 26, 3783–3787

    Article  CAS  Google Scholar 

  30. Fujisawa T, Shibuya A, Sato D, Shimizu M. Stereoselective synthesis of monocyclic β-lactam related to a carmonam precursor via keteneimine reaction. Synlett, 1995, 39: 1067–1068

    Article  Google Scholar 

  31. Tsubouchi H, Tsuji K, Yusumura K, Tada N, Nishitani S, Minamikawa J, Ishikawa H. A convenient one pot asymmetric synthesis of cis-β-lactams: Key precursors for optically active 2-oxaisocephems. Tetrahedron: Asymmetry, 1994, 5: 441–452

    Article  CAS  Google Scholar 

  32. Broady SD, Rexhausen JE, Thomas EJ. Total synthesis of AI-77-B: Stereoselective hydroxylation of 4-alkenylazetidinones. J Chem Soc, Perkin Trans 1, 1999:1083–1094

  33. Myers AG, Zhong B, Movassaghi M, Kung DW, Lanman BA, Kwon S. Synthesis of highly epimerizable N-protected α-amino aldehydes of high enantiomeric excess. Tetrahedron Lett, 2000, 41, 1359–1362

    Article  CAS  Google Scholar 

  34. Garcia-Martin M, Violante de Paz Banez M, Garcia-Alvarez M, Munoz-Guerra S, Galbis JA. Synthesis and structural studies of 2,3-disubstituted poly(β-peptide)s. Macromolecules, 2001, 34: 5042–5047

    Article  Google Scholar 

  35. Alcaide B, Yolanda MC, Javier PC, Julih RL, Miguel AS. The stereoselective preparation of mono- and bis-β-lactams by the 1,4-diazal, 3-diene-acid chloride condensation: scope and synthetic applications. J Org Chem, 1992, 57: 5921–5931

    Article  CAS  Google Scholar 

  36. Evans DA, Williams JM. The asymmetric synthesis of β-lactam antibiotics-V application of chiral α,β-epoxyimines in ketene-imine cycloaddition reactions leading to homochiral 3-aminoazetidinones Tetrahedron Lett, 1988, 29: 5065–5068

    Article  CAS  Google Scholar 

  37. Jayaraman M, Deshmukh AR, Bhawal BM. Application of (+)-(1S,2S)-2-amino-1-phenylpropan-1,3-diol in the formal total synthesis of carbapenems, novel 4-cyano-β-lactams and β-hydroxy aspartates. Tetrahedron, 1996, 52: 8989–9004

    Article  CAS  Google Scholar 

  38. Shirode NM, Rakeeb A, Deshmukh AS. 4-Formylazetidin-2-ones, synthon for the synthesis of (2R,3S) and (2S,3R)-3-amino-2-hydroxydecanoic acid (AHDA) Tetrahedron, 2006, 62: 4615–4621

    Article  CAS  Google Scholar 

  39. Cundy DJ, Donohue AC, McCarthy TD. An asymmetric synthesis of ADDA and ADDA-glycine dipeptide using the β-lactam synthon method. J Chem Soc Perkin Trans 1, 1999, 5: 559–568

    Article  Google Scholar 

  40. Laurent M, Cérésiat M, Marchand-Brynaert J. Synthesis of (1R,3S,4S)-3-[1-(tert-butyldimethylsilyloxy)ethyl]-4-(cyclopropylcar bonyloxy)azetidin-2-one. Eur J Org Chem, 2006: 3755–3376

  41. Pansuriya PB, Patel MN. Synthesis, spectral, thermal, DNA I nteraction and antimicrobial properties of novel Cu(II) heterochelates. Appl Organomet Chem, 2007, 21: 739–749

    Article  CAS  Google Scholar 

  42. Lemp E, Zanocco AL, Guenther G, Pizarro N. Solvent effect on the sensitized photooxygenation of cyclic and acyclic α-diimines Tetrahedron, 2006, 62: 10734–10746

    Article  CAS  Google Scholar 

  43. Jin W, Makioka Y, Kitamura T, Fujiwara Y. A novel reductive dimerization/oxidative dehydrogenation of aldimines mediated by lanthanoid metals. J Org Chem, 2001, 66: 514–520

    Article  CAS  Google Scholar 

  44. Jose B, Fernando A, Ramon L. Oxidative aminomercuration of prop-2-ynol. Syntheses of substituted propane-1,2-diimines and 2-aminopropionamidines. J Chem Soc Chem Comm, 1981, 22: 1181–1182

    Google Scholar 

  45. Liang Y, Jiao L, Zhang SW, Yu ZX, Xu JX. New insights into the torquoselectivity of the Staudinger reaction. J Am Chem Soc, 2009, 131: 1542–1549

    Article  CAS  Google Scholar 

  46. Li BN, Wang YK, Du DM, Xu JX. Notable and obvious ketene substituent-dependent effect of temperature on the stereoselectivity in the Staudinger reaction. J Org Chem, 2007, 72: 990–997

    Article  CAS  Google Scholar 

  47. Jiao L, Liang Y, Xu JX. Origin of the relative stereoselectivity of the β-lactam formation in the Staudinger Reaction. J Am Chem Soc, 2006, 128: 6060–6069

    Article  CAS  Google Scholar 

  48. Qi HZ, Li XY, Xu JX. Stereoselective control in the Staudinger reactions involving monosubstituted ketenes with electron acceptor substituents: Experimental investigation and theoretical rationalization. Org Biomol Chem, 2011, 9: 2702–2714

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiaXi Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Xu, J. Stereoselective synthesis of cis- and trans-4-acyl-β-lactams from vicinal diketones and ketoaldehydes. Sci. China Chem. 54, 1711–1717 (2011). https://doi.org/10.1007/s11426-011-4372-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4372-1

Keywords

Navigation