Skip to main content
Log in

Orlicz mixed affine quermassintegrals

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

A class of geometric quantities for convex bodies is introduced in the framework of Orlicz Brunn-Minkowski theory. It is shown that these new geometric quantities are affine invariant and precisely the generalizations of classical affine quermassintegrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böröczky K, Lutwak E, Yang D, et al. The log-Brunn-Minkowski inequality. Adv Math, 2012, 231: 1974–1997

    Article  MathSciNet  Google Scholar 

  2. Böröczky K, Lutwak E, Yang D, et al. The logarithmic Minkowski problem. J Amer Math Soc, 2013, 26: 831–852

    Article  MathSciNet  Google Scholar 

  3. Burago Y D, Zalgaller V A. Geometric Inequalities. Berlin: Springer-Verlag, 1988

    Book  Google Scholar 

  4. Furstenberg H, Tzkoni I. Spherical harmonics and integral geometry. Israel J Math, 1971, 10: 327–338

    Article  MathSciNet  Google Scholar 

  5. Gardner R J. Geometric Tomography. Cambridge: Cambridge University Press, 2006

    Book  Google Scholar 

  6. Gardner R J, Hug D, Weil W. The Orlicz-Brunn-Minkowski theory: A general framework, additions, and inequalities. J Differential Geom, 2014, 97: 427–476

    MathSciNet  Google Scholar 

  7. Grinberg E L. Isoperimetric inequalities and identities for k-dimensional cross-sections of convex bodies. Math Ann, 1991, 291: 75–86

    Article  MathSciNet  Google Scholar 

  8. Gruber P M. Convex and Discrete Geometry. Berlin: Springer, 2007

    Google Scholar 

  9. Haberl C, Lutwak E, Yang D, et al. The even Orlicz Minkowski problem. Adv Math, 2010, 224: 2485–2510

    Article  MathSciNet  Google Scholar 

  10. He B, Leng G, Li K. Projection problems for symmetric polytopes. Adv Math, 2006, 207: 73–90

    Article  MathSciNet  Google Scholar 

  11. Ludwig M. General affine surface areas. Adv Math, 2010, 224: 2346–2360

    Article  MathSciNet  Google Scholar 

  12. Lutwak E. A general isepiphanic inequality. Proc Amer Math Soc, 1984, 90: 415–421

    Article  MathSciNet  Google Scholar 

  13. Lutwak E. Inequalities for Hadwiger’s harmonic quermassintegrals. Math Ann, 1988, 280: 165–175

    Article  MathSciNet  Google Scholar 

  14. Lutwak E. The Brunn-Minkowski-Firey theory, I: Mixed volumes and the Minkowski problem. J Differential Geom, 1993, 38: 131–150

    MathSciNet  Google Scholar 

  15. Lutwak E. The Brunn-Minkowski-Firey theory, II: Affine and geominimal surface areas. Adv Math, 1996, 118: 244–294

    Article  MathSciNet  Google Scholar 

  16. Lutwak E, Yang D, Zhang G. Orlicz projection bodies. Adv Math, 2010, 223: 220–242

    Article  MathSciNet  Google Scholar 

  17. Lutwak E, Yang D, Zhang G. Orlicz centroid bodies. J Differential Geom, 2010, 84: 365–387

    MathSciNet  Google Scholar 

  18. Naor A. The surface measure and cone measure on the sphere of l n p . Trans Amer Math Soc, 2007, 359: 1045–1079

    Article  MathSciNet  Google Scholar 

  19. Paouris G, Werner E. Relative entropy of cone-volumes and L p centroid bodies. Proc London Math Soc, 2012, 104: 253–286

    Article  MathSciNet  Google Scholar 

  20. Rao M M, Ren Z D. Theory of Orlicz Spaces. New York: Marcel Dekker, 1991

    Google Scholar 

  21. Ren D L. Topics in Integral Geometry. Singapore: World Scientific, 1994

    Google Scholar 

  22. Santaló L A. Integral Geometry and Geometric Probability. Cambridge: Cambridge University Press, 2004

    Book  Google Scholar 

  23. Schneider R. Convex Bodies: The Brunn-Minkowski Theory. Cambridge: Cambridge University Press, 2014

    Google Scholar 

  24. Stancu A. The discrete planar L 0-Minkowski problem. Adv Math, 2002, 167: 160–174

    Article  MathSciNet  Google Scholar 

  25. Xiong G. Extremum problem for the cone volume functional of convex polytopes. Adv Math, 2010, 225: 3214–3228

    Article  MathSciNet  Google Scholar 

  26. Xiong G, Zou D. Orlicz mixed quermassintegrals. Sci China Math, 2014, 57: 2549–2562

    Article  MathSciNet  Google Scholar 

  27. Zhu B, Zhou J, Xu W. Dual Orlicz-Brunn-Minkowski theory. Adv Math, 2014, 264: 700–725

    Article  MathSciNet  Google Scholar 

  28. Zou D, Xiong G. Orlicz-John ellipsoids. Adv Math, 2014, 265: 132–168

    Article  MathSciNet  Google Scholar 

  29. Zou D, Xiong G. The minimal Orlicz surface area. Adv Appl Math, 2014, 61: 25–45

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zou, D. & Xiong, G. Orlicz mixed affine quermassintegrals. Sci. China Math. 58, 1715–1722 (2015). https://doi.org/10.1007/s11425-014-4965-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4965-1

Keywords

MSC(2010)

Navigation