Skip to main content
Log in

Callicarpa longissima extract, carnosol-rich, potently inhibits melanogenesis in B16F10 melanoma cells

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Cosmetic industries focus on developing materials and resources that regulate skin pigmentation. Melanin, the major pigment in human skin, protects the skin against damage from ultraviolet light. An ethanolic extract of the leaves of Callicarpa longissima inhibits melanin production in B16F10 mouse melanoma cells by suppressing microphthalmia-associated transcription factor (MITF) gene expression. Following purification and analysis using liquid chromatography–mass spectrometry (LC–MS), NMR, and biochemical assays, carnosol was determined to be responsible for the major inhibitory effect of the C. longissima extract on melanin production. Carnosol is an oxidative product of carnosic acid, whose presence in the extract was also confirmed by an authentic reference. The carnosol and carnosic acid content in the extract was approximately 16 % (w/w). These results suggest that C. longissima is a novel, useful, and attractive source of skin-whitening agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Osborne R, Hakozaki T, Laughlin T, Finlay DR (2012) Application of genomics to breakthroughs in the cosmetic treatment of skin ageing and discoloration. Br J Dermatol 166(Suppl 2):16–19

    Article  CAS  PubMed  Google Scholar 

  2. Yamada T, Hasegawa S, Inoue Y, Date Y, Arima M, Yagami A, Iwata Y, Takahashi M, Yamamoto N, Mizutani H, Nakata S, Matsunaga K, Akamatsu H (2014) Accelerated differentiation of melanocyte stem cells contributes to the formation of hyperpigmented maculae. Exp Dermatol 23:652–658

    Article  CAS  PubMed  Google Scholar 

  3. d’Ischia M, Wakamatsu K, Napolitano A, Briganti S, Garcia-Borron JC, Kovacs D, Meredith P, Pezzella A, Picardo M, Sarna T, Simon JD, Ito S (2013) Melanins and melanogenesis: methods, standards, protocols. Pigment Cell Melanoma Res 26:616–633

    Article  PubMed  Google Scholar 

  4. Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445:843–850

    Article  CAS  PubMed  Google Scholar 

  5. Vachtenheim J, Borovansky J (2010) “Transcription physiology” of pigment formation in melanocytes: central role of MITF. Exp Dermatol 19:617–627

    Article  CAS  PubMed  Google Scholar 

  6. Horike N, Kumagai A, Shimono Y, Onishi T, Itoh Y, Sasaki T, Kitagawa K, Hatano O, Takagi H, Susumu T, Teraoka H, Kusano K, Nagaoka Y, Kawahara H, Takemori H (2010) Downregulation of SIK2 expression promotes the melanogenic program in mice. Pigment Cell Melanoma Res 23:809–819

    Article  CAS  PubMed  Google Scholar 

  7. Ando H, Oka M, Ichihashi M, Mishima Y (1990) Protein kinase C and linoleic acid-induced inhibition of melanogenesis. Pigment Cell Res 3:200–206

    Article  CAS  PubMed  Google Scholar 

  8. Kim DS, Park SH, Kwon SB, Li K, Youn SW, Park KC (2004) (-)-Epigallocatechin-3-gallate and hinokitiol reduce melanin synthesis via decreased MITF production. Arch Pharm Res 27:334–339

    Article  CAS  PubMed  Google Scholar 

  9. Kahn V (1995) Effect of kojic acid on the oxidation of DL-DOPA, norepinephrine, and dopamine by mushroom tyrosinase. Pigment Cell Res 8:234–240

    Article  CAS  PubMed  Google Scholar 

  10. Jimbow K, Obata H, Pathak MA, Fitzpatrick TB (1974) Mechanism of depigmentation by hydroquinone. J Invest Dermatol 62:436–449

    Article  CAS  PubMed  Google Scholar 

  11. Seiji M, Yoshida T, Itakura H, Irimajiri T (1969) Inhibition of melanin formation by sulfhydryl compounds. J Invest Dermatol 52:280–286

    Article  CAS  PubMed  Google Scholar 

  12. Ni-Komatsu L, Tong C, Chen G, Brindzei N, Orlow SJ (2008) Identification of quinolines that inhibit melanogenesis by altering tyrosinase family trafficking. Mol Pharmacol 74:1576–1586

    Article  PubMed Central  PubMed  Google Scholar 

  13. Liu YW, Cheng YB, Liaw CC, Chen CH, Guh JH, Hwang TL, Tsai JS, Wang WB, Shen YC (2012) Bioactive diterpenes from Callicarpa longissima. J Nat Prod 75:689–693

    Article  CAS  PubMed  Google Scholar 

  14. Kumagai A, Horike N, SatohY Uebi T, Sasaki T, Itoh Y, Hirata Y, Uchio-Yamada K, Kitagawa K, Uesato S, Kawahara H, Takemori H, Nagaoka Y (2011) A potent inhibitor of SIK2, 3,3′,7-trihydroxy-4′-methoxyflavon (4′-O-methylfisetin), promotes melanogenesis in B16F10 melanoma cells. PLoS One 6:e26148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Imokawa G, Mishima Y (1981) Isolation and biochemical characterization of tyrosinase-rich GERL and coated vesicle in melanin synthesizing cells. Br J Dermatol 104:169–178

    Article  CAS  PubMed  Google Scholar 

  16. Shirasugi I, Sakakibara Y, Yamasaki M, Nishiyama K, Matsui T, Liu MC, Suiko M (2010) Novel screening method for potential skin-whitening compounds by a luciferase reporter assay. Biosci Biotechnol Biochem 74:2253–2258

    Article  CAS  PubMed  Google Scholar 

  17. Aruoma OI, Halliwell B, Aeschbach R, Loligers J (1992) Antioxidant and pro-oxidant properties of active rosemary constituents: carnosol and carnosic acid. Xenobiotica 22:257–268

    Article  CAS  PubMed  Google Scholar 

  18. Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, De Galarreta CM, Cuadrado A (2004) Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 279:8919–8929

    Article  CAS  PubMed  Google Scholar 

  19. Satoh T, Kosaka K, Itoh K, Kobayashi A, Yamamoto M, Shimojo Y, Kitajima C, Cui J, Kamins J, Okamoto S, Izumi M, Shirasawa T, Lipton SA (2008) Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J Neurochem 104:1116–1131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Masuda T, Inaba Y, Maekawa T, Takeda Y, Tamura H, Yamaguchi H (2002) Recovery mechanism of the antioxidant activity from carnosic acid quinone, an oxidized sage and rosemary antioxidant. J Agric Food Chem 50:5863–5869

    Article  CAS  PubMed  Google Scholar 

  21. Subbaramaiah K, Cole PA, Dannenberg AJ (2002) Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and -independent mechanisms. Cancer Res 62:2522–2530

    CAS  PubMed  Google Scholar 

  22. Tsai CW, Lin CY, Lin HH, Chen JH (2011) Carnosic acid, a rosemary phenolic compound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells. Neurochem Res 36:2442–2451

    Article  CAS  PubMed  Google Scholar 

  23. de la Roche M, Rutherford TJ, Gupta D, Veprintsev DB, Saxty B, Freund SM, Bienz M (2012) An intrinsically labile alpha-helix abutting the BCL9-binding site of beta-catenin is required for its inhibition by carnosic acid. Nat Commun 3:680

    Article  PubMed Central  PubMed  Google Scholar 

  24. Huang SC, Ho CT, Lin-Shiau SY, Lin JK (2005) Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappa B and c-Jun. Biochem Pharmacol 69:221–232

    Article  CAS  PubMed  Google Scholar 

  25. Chen JH, Ou HP, Lin CY, Lin FJ, Wu CR, Chang SW, Tsai CW (2012) Carnosic acid prevents 6-hydroxydopamine-induced cell death in SH-SY5Y cells via mediation of glutathione synthesis. Chem Res Toxicol 25:1893–1901

    Article  CAS  PubMed  Google Scholar 

  26. Zhai C, Liu Q, Zhang Y, Wang S, Zhang Y, Li S, Qiao Y (2014) Identification of natural compound carnosol as a novel TRPA1 receptor agonist. Molecules 19:18733–18746

    Article  PubMed  Google Scholar 

  27. Johnson JJ, Syed DN, Heren CR, Suh Y, Adhami VM, Mukhtar H (2008) Carnosol, a dietary diterpene, displays growth inhibitory effects in human prostate cancer PC3 cells leading to G2-phase cell cycle arrest and targets the 5′-AMP-activated protein kinase (AMPK) pathway. Pharm Res 25:2125–2134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Sato S, Roberts K, Gambino G, Cook A, Kouzarides T, Goding CR (1997) CBP/p300 as a co-factor for the Microphthalmia transcription factor. Oncogene 14:3083–3092

    Article  CAS  PubMed  Google Scholar 

  29. Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H, Montminy M (2005) The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437:1109–1111

    Article  CAS  PubMed  Google Scholar 

  30. Lehraiki A, Abbe P, Cerezo M, Rouaud F, Regazzetti C, Chignon-Sicard B, Passeron T, Bertolotto C, Ballotti R, Rocchi S (2014) Inhibition of melanogenesis by the antidiabetic metformin. J Invest Dermatol 134:2589–2597

    Article  CAS  PubMed  Google Scholar 

  31. Dunn KJ, Williams BO, Li Y, Pavan WJ (2000) Neural crest-directed gene transfer demonstrates Wnt1 role in melanocyte expansion and differentiation during mouse development. Proc Natl Acad Sci USA 97:10050–10055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Shin JM, Kim MY, Sohn KC, Jung SY, Lee HE, Lim JW, Kim S, Lee YH, Im M, Seo YJ, Kim CD, Lee JH, Lee Y, Yoon TJ (2014) Nrf2 negatively regulates melanogenesis by modulating PI3K/Akt signaling. PLoS One 9:e96035

    Article  PubMed Central  PubMed  Google Scholar 

  33. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Suzuki T, Motohashi H, Yamamoto M (2013) Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci 34:340–346

    Article  CAS  PubMed  Google Scholar 

  35. Tsai CW, Lin CY, Wang YJ (2011) Carnosic acid induces the NAD(P)H: quinone oxidoreductase 1 expression in rat clone 9 cells through the p38/nuclear factor erythroid-2 related factor 2 pathway. J Nutr 141:2119–2125

    Article  CAS  PubMed  Google Scholar 

  36. Tian H, Zhang D, Gao Z, Li H, Zhang B, Zhang Q, Li L, Cheng Q, Pei D, Zheng J (2014) MDA-7/IL-24 inhibits Nrf2-mediated antioxidant response through activation of p38 pathway and inhibition of ERK pathway involved in cancer cell apoptosis. Cancer Gene Ther 21:416–426

    Article  CAS  PubMed  Google Scholar 

  37. Smalley K, Eisen T (2000) The involvement of p38 mitogen-activated protein kinase in the alpha-melanocyte stimulating hormone (alpha-MSH)-induced melanogenic and anti-proliferative effects in B16 murine melanoma cells. FEBS Lett 476:198–202

    Article  CAS  PubMed  Google Scholar 

  38. Chun KS, Kundu J, Chae IG, Kundu JK (2014) Carnosol: a phenolic diterpene with cancer chemopreventive potential. J Cancer Prev 19:103–110

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Junko Morita, Mr. Sachio Shiga, Mr. Fumihiro Kamada, Dr. Shigeki Katsuki (National Institute of Biomedical Innovation), and Mr. Akihiro Hojo (Kansai University) for providing technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takemori.

Ethics declarations

Conflict of interest

MY and AK are employees of Momotani-juntenkan Co. Ltd., which paid 300,000 JP Yen: 2012 towards the costs of this study. Other contributors declare that they have no conflict of interest.

Funding

This study was funded by Grants-in-Aid for Scientific Research from the Japan Ministry of Health, Labor, and Welfare/AMED (2013–2017, 2014–2016 to HT and HW), and Supported Program for the Strategic Research Foundation at Private Universities (2011–2015: S1101027 to HW and 2013–2017 to HK, YN, and HT) from the Ministry of Education, Culture, Sports Science and Technology Japan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamahara, M., Sugimura, K., Kumagai, A. et al. Callicarpa longissima extract, carnosol-rich, potently inhibits melanogenesis in B16F10 melanoma cells. J Nat Med 70, 28–35 (2016). https://doi.org/10.1007/s11418-015-0933-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-015-0933-5

Keywords

Navigation