Skip to main content
Log in

Neuroprotective effect of Buddleja cordata methanolic extract in the 1-methyl-4-phenylpyridinium Parkinson’s disease rat model

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the irreversible loss of dopaminergic neurons in the nigrostriatal pathway with subsequent dopamine deficiency. Environmental causes have been proposed through molecules, such as 1-methyl-4-phenylpyridinium (MPP+), to induce oxidative stress. The methanolic extract of plants of the genus Buddleja has been reported to have in vitro and in vivo antioxidant properties to protect against neuronal death. In the present study, the neuroprotective effect of Buddleja cordata methanolic extract in the MPP+ PD rat model was investigated. Animals were administered orally with 50 or 100 mg/kg of methanolic extract every 24 h for 14 days. Twenty hours later, rats were infused with an intrastriatal stereotaxic microinjection of 10 µg MPP+ in 8 μl sterile saline solution. Six days later, the animals were treated with 1 mg/kg apomorphine to record ipsilateral rotations for 1 h. All the rats were killed by decapitation and the lesioned striatum was dissected for dopamine and lipid peroxidation quantifications. Both methanolic extract doses led to a significantly lower (P < 0.05) number of ipsilateral rotations (75–80 %). This behavioral protection was corroborated with 60 % level of dopamine preservation (P < 0.05) and 90 % decrease in the formation of lipidic fluorescent products in the striatum (P < 0.05). This study demonstrates the antioxidant and neuroprotective effect of Buddleja cordata methanolic extract in the MPP+ PD rat model, possibly due to the involvement of phenylpropanoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ME:

Methanolic extract

MPP+ :

1-Methyl-4-phenylpyridinium

PD:

Parkinson’s disease,

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydrophenylpyridine

MAO-B:

Monoamine oxidase B

DA:

Dopamine

References

  1. Toulouse A, Sullivan A (2008) Progress in Parkinson’s disease—where do we stand? Prog Neurobiol 85:376–392

    Article  PubMed  Google Scholar 

  2. Giroux ML (2007) Parkinson disease: managing a complex, progressive disease at all stages. Cleve Clin J Med 74:313–328

    Article  PubMed  Google Scholar 

  3. Agid Y, Javoy-Agid F, Ruberg M (1987) Biochemistry of neurotransmitters in Parkinson’s disease. In: Marsden CE, Fahn S (eds) Movements disorders. Butterworth, London, pp 166–230

    Google Scholar 

  4. Blum D, Torch S, Lambeng N, Nissou M, Benabid A, Sadoul R, Jean-Marc V (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172

    Article  CAS  PubMed  Google Scholar 

  5. Boll MC, Alcaraz-Zubeldia M, Ríos C (2011) Medical management of Parkinson’s disease: focus on neuroprotection. Curr Neuropharmacol 192:350–359

    Google Scholar 

  6. Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JPE (2010) Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients 2:1106–1131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lozoya X, Aguilar A, Camach JR (1987) Encuesta sobre el uso actual de plantas en la medicina tradicional. Rev Med Inst Mex Seguro Soc 25:283–291

    Google Scholar 

  8. Martínez-Vázquez M, Ramírez-Apan TO, Lastra AL, Bye R (1998) A comparative study of the analgesic and anti-inflammatory activities of pectolarin isolated from Cirsium subcoriaceum and linarin isolated from Buddleia cordata. Planta Med 64:134–137

    Article  PubMed  Google Scholar 

  9. Avila JG, de Liverant JG, Martínez A, Martínez G, Muñoz JL, Arciniegas A, Romo de Vivar A (1999) Mode of action of Buddleja cordata verbacoside against Staphylococcus aureus. J Ethnopharmacol 66:75–78

    Article  CAS  PubMed  Google Scholar 

  10. Rodríguez-Zaragoza S, Ordaz C, Avila G, Muñoz JL, Arciniegas A, Romo de Vivar A (1999) In vitro evaluation of the amebicidal activity of Buddleia cordata (Loganiaceae, H.B.K.) on several strains of Acanthamoeba. J Ethnopharmacol 66:327–334

    Article  PubMed  Google Scholar 

  11. Díaz BR, Jiménez M, Auró A (2000) Evaluación del efecto parasiticida de los extractos acuoso y metanólico de Buddleja cordata HBK (Tepozán) sobre Costia necatrix en tilapia (Oreochromis sp). Vet Mex 31:189–194

    Google Scholar 

  12. Lee DH, Ha N, Bu YM, Choi HI, Park YG, Kim YB, Kim MY, Kim H (2006) Neuroprotective effect of Buddleja officinalis extract on transient middle cerebral artery occlusion in rats. Biol Pharm Bull 29:1608–1612

    Article  CAS  PubMed  Google Scholar 

  13. Li YY, Lu JH, Li Q, Zhao YY, Pu XP (2008) Pedicularioside A from Buddleia lindleyana induced by 1-methyl-4-phenylpyridinium ions (MPP+) in primary cultures of rat mesencephalic neurons. Eur J Pharmacol 579:134–140

    Article  CAS  PubMed  Google Scholar 

  14. Avila JG, Castañeda CMC, Benitez FJC, Durán DA, Barroso VR, Martíınez CG, Romo de Vivar A (2005) Photoprotective activity of Buddleja scordioides. Fitoterapia 76:301–309

    Article  Google Scholar 

  15. Backhouse N, Rosales L, Apablaza C, Goity L, Erazo S, Negrete R, Theodoluz C, Rodríguez J, Delporte C (2008) Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa Buddlejaceae. J Ethnopharmacol 116:263–269

    Article  CAS  PubMed  Google Scholar 

  16. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, New York, p 456

    Google Scholar 

  17. Schwarcz R, Fuxe K, Agnati LF, Hokfelt T, Coyle JT (1979) Rotational behaviour in rats with unilateral striatal kainic acid lesions: a behavioural model for studies on intact dopamine receptors. Brain Res 170:485–495

    Article  CAS  PubMed  Google Scholar 

  18. Alcaraz-Zubeldia M, Rojas P, Boll C, Rıos C (2001) Neuroprotective effect of acute and chronic administration of copper (II) sulfate against MPP+ neuro-toxicity in mice. Neurochem Res 26:61–66

    Google Scholar 

  19. Triggs WJ, Willmore LJ (1984) In vivo lipid peroxidation in rat brain following intracortical Fe2+ injection. J Neurochem 42:976–979

    Article  CAS  PubMed  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  21. Díaz BR, Jiménez M, Auró A (2000) Evaluación del efecto parasiticida de los extractos acuoso y metanólico de Buddleja cordata HBK (Tepozán) sobre Costia necatrix en tilapia (Oreochromis sp). Vet Mex 31:189–194

    Google Scholar 

  22. Houghton PJ (1986) Ethnopharmacology of some Buddleja species. J Ethnopharmacol 11:293–308

    Article  Google Scholar 

  23. Yamamoto A, Nitta S, Miyase T, Ueno A, Wu LJ (1993) Phenylethanoid and lignan-iridoid complex glycosides from roots of Buddleja davidii. Phytochemistry 32:421–425

    Article  CAS  PubMed  Google Scholar 

  24. Funes L, Fernández-Arroyo S, Laporta O, Pons A, Roche E, Segura-Carretero A, Fernández-Gutireez A, Micol V (2009) Correlation between plasma antioxidant capacity and verbascoside levels in rats after oral administration of lemon verbena extract. Food Chem 117:589–598

    Article  CAS  Google Scholar 

  25. Pardo F, Perich F, Villarroel L, Torres R (1993) Isolation of verbascoside, an antimicrobial constituent of Buddleja globosa leaves. J Ethnopharmacol 139:221–223

    Article  Google Scholar 

  26. Geng X, Tian X, Tu P, Pu X (2007) Neuroprotective effects of echinacoside in the mouse MPTP model of Parkinson’s disease. Eur J Pharmacol 564:66–74

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Q, Gao J, Li W, Cai D (2010) Neurotrophic and neurorescue effects of Echinacoside in the subacute MPTP mouse model of Parkinson’s disease. Brain Res 346:224–236

    Article  Google Scholar 

  28. Lee KJ, Woo ER, Choi CY, Shin DW, Lee DG, You HJ, Jeong HG (2004) Protective effect of acteoside on carbon tetrachloride-induced hepatotoxicity. Life Sci 74:1051–1064

    Article  CAS  PubMed  Google Scholar 

  29. Dostal V, Roberts CM, Link C (2010) Genetic mechanisms of coffee extract protection in a Caenorhabditis elegans model of b-amyloid peptide toxicity. Genetics 186:857–866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. González-Correa JA, Navas MD, Lopez-Villodres JA, Trujillo M, Espartero JL, De la Cruz JP (2008) Neuroprotective effect of hydroxytyrosol and hydroxytyrosol acetate in rat brain slices subjected to hypoxia-reoxygeation. Neurosci Lett 446:143–146

    Article  PubMed  Google Scholar 

  31. Zhang J, Stanley RA, Melton LD (2006) Lipid peroxidation inhibition capacity assay for antioxidants based on liposomal membranes. Mol Nutr Food Res 50:714–724

    Article  CAS  PubMed  Google Scholar 

  32. Lankha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolase. State of the art. Adv Appl Microbiol 44:215–260

    Article  Google Scholar 

  33. Poquet L, Clifford MN, Williamson G (2008) Transport and metabolism of ferulic acid through the colonic epithelium. Drug Metab Dispos 36:190–197

    Article  CAS  PubMed  Google Scholar 

  34. Konishi Y, Kobayashi S (2004) Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal caco-2 cell monolayers. J Agric Food Chem 52:2518–2526

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe H, Yashiro T, Tohjo Y, Konishi Y (2006) Non-involvement of the human monocarboxylic acid transporter 1 (MCT1) in the transport of phenolic acid. Biosci Biotechnol Biochem 70:928–1933

    Google Scholar 

  36. Manna C, Galletti P, Maisto G, Cucciolla V, D’Angelo S, Zappia V (2000) Transport mechanism and metabolism of olive oil hydroxytyrosol in Caco-2 cells. FEBS Lett 470:341–344

    Article  CAS  PubMed  Google Scholar 

  37. Tuck KL, Freeman MP, Hayball PJ, Stretch GL, Stupans I (2001) The in vivo fate of hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and oral dosing of labeled compounds to rats. J Nutr 131:1993–1996

    CAS  PubMed  Google Scholar 

  38. Vissers MN, Zock PL, Roodenburg AJ, Leenen R, Katan MB (2002) Olive oil phenols are absorbed in humans. J Nutr 132:409–417

    CAS  PubMed  Google Scholar 

  39. Geellings A, López-Huerta EL, Morales JC, Boza J, Jiménez J (2003). Natural products and derivatives thereof for protection against neurodegenerative diseases. United States Patent Application Publication; US 2003/0236202 A1

  40. Deiana M, Aruoma OI, Bianchi ML, Spencer JP, Kaur H, Halliwell B, Aeschbach R, Banni S, Dessi MA, Corongiu FP (1999) Inhibition of peroxynitrite dependent DNA base modification and tyrosine nitration by the extra virgin olive oil-derived antioxidant hydroxytyrosol. Free Radic Biol Med 26:762–769

    Article  CAS  PubMed  Google Scholar 

  41. Martin MA, Ramos S, Granado-Serrano AB, Rodriguez-Ramiro I, Trujillo M, Bravo L, Goya L (2010) Hydroxytyrosol induces antioxidant/detoxificant enzymes and Nrf2 translocation via ex- tracellular regulated kinases and phosphatidylinositol-3-kinase/protein kinase B pathways in HepG2 cells. Mol Nutr Food Res 54:956–966

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the spectrophotometry systems obtained from the CONACYT Grant 106436. The natural extract and the other material used in this research were supported by the DGAPA-UNAM, PAPIIT: IN219612. Pérez-Barrón received a fellowship from CONACYT 44067.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Monroy-Noyola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Barrón, G., Ávila-Acevedo, J.G., García-Bores, A.M. et al. Neuroprotective effect of Buddleja cordata methanolic extract in the 1-methyl-4-phenylpyridinium Parkinson’s disease rat model . J Nat Med 69, 86–93 (2015). https://doi.org/10.1007/s11418-014-0866-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-014-0866-4

Keywords

Navigation